Skull Cave, Lava Beds National Monument, 1968

Robert L. Hoffman¹, Christopher R. Currens² and Mary Ann Madej²
(USGS FRESC¹, USGS WERC²)

With contributions from:
Bob Truitt, Laura Bridy, Andrew Duff, Sean B. Smith and Sid Covington
(Klamath Network Inventory and Monitoring Program)

On behalf of
The Water Quality Subgroup of the Klamath Network Science Advisory Committee:
Mark Buktenica, Crater Lake National Park
Louise Johnson, Lassen Volcanic National Park
Randy Klein, Redwood National Park
Mary Ann Madej, USGS Western Ecological Research Center
Brian Rasmussen, Whiskeytown National Recreation Area
Bob Truitt, Klamath Network (chairperson)

Ad hoc members:
Marie Denn, NPS Pacific West Region
Barry Long NPS Water Resources Division
Gary Rosenlieb, NPS Water Resources Division

October 2005
Table of Contents

List of Tables .. 3
List of Figures .. 4
Executive Summary .. 5
Introduction .. 8
Section 1: Overview of Klamath Network Aquatic Resources .. 9
Section 2: Locations of Active Monitoring Stations in the Klamath Network Region 13
Section 3: Past Inventory, Monitoring and Research Activities in the Klamath Network Park Units .. 17
 • Crater Lake National Park ... 18
 • Lassen Volcanic National Park .. 22
 • Lava Beds National Monument .. 26
 • Oregon Caves National Monument ... 30
 • Redwood National and State Parks ... 33
 • Whiskeytown National Recreation Area .. 39
Section 4: Water Quality Monitoring and Research Programs of Allied Agencies Relevant to Klamath Network Park Units ... 42
Section 5: Network-wide Scoping, Identification, and Prioritization of Vital Signs for Aquatic Resource Monitoring ... 46
 A. Purpose, Need, and Approach .. 46
 B. Vital Signs Scoping ... 46
 C. Park-level Vital Signs Tables .. 57
 D. Network-level Vital Signs Assessment .. 74
 • Priority Aquatic Resource Monitoring Questions .. 74
 • Aquatic Resource Vital Signs Categories ... 74
 • Vital Signs Prioritization ... 78
 • Monitoring Questions, Potential Indicators of Resource Stress, and Associated Monitoring Options .. 80
References Cited ... 86
Attachment I: Bibliography of KLMN Park Unit Aquatic Resources Inventory, Monitoring and Research Study Reports and Publications .. 91
Attachment II: Aquatic Resources and Water Quality Questionnaire 140
Attachment III: General Conceptual Models of Freshwater and Marine Ecosystems 146
LIST OF TABLES

Table 1: Klamath Network 303(d) listed impaired water bodies 13
Table 2: Daily Precipitation Monitoring Stations 14
Table 3: Hourly Precipitation Monitoring Stations 14
Table 4: Evaporation Monitoring Stations .. 15
Table 5: Air Temperature Monitoring Stations ... 15
Table 6: Drinking Water Intakes .. 15
Table 7: Stream Gaging Stations .. 16
Table 8: Highlights of Crater Lake monitoring and research activities, 1892-1984 (from Larson, 1987) ... 19
Table 9: Crater Lake and Intracaldera Springs Water Quality Parameters..... 20
Table 10: Beneficial Uses of Water within Redwood National and State Parks (NCRWQCB) ... 37
Table 11: Marine Inventory Needs at Redwood National and State Park..... 38
Table 12: Broad-scale Monitoring Questions and Potential Vital Signs for Water, a National Framework Level 1 Category 51
Table 13: Participants at the NPS Klamath Network Water Quality Vital Signs Scoping Meeting, Ashland, Oregon, December 1, 2004 56
Table 14: Crater Lake National Park Vital Signs Tables 61
Table 15: Lassen Volcanic National Park Vital Signs Tables 63
Table 16: Lava Beds National Monument Vital Signs Tables 65
Table 17: Oregon Caves National Monument Vital Signs Tables 66
Table 18: Redwood National and State Parks Vital Signs Table (FRESHWATER) 67
Table 19: Redwood National and State Parks Vital Signs Tables (MARINE) 69
Table 20: Whiskeytown National Recreation Area Vital Signs Tables 71
Table 21: General Vital Signs Categories and Subcategories and their Applicability in each Klamath Network Park Unit .. 76
Table 22: General Vital Signs Categories and Subcategories and their Applicability in each Freshwater Resource-type in Klamath Network Park Units ... 77
Table 23: General Vital Signs Categories and Subcategories and their Applicability to Three General Types of Marine Resources in Redwood National and State Parks ... 78
Table 24: Priority Ratings for each of Five General Aquatic Resource Vital Signs Categories and Subcategories ... 79
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Horseshoe Lake, Lassen Volcanic National Park</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>Klamath Network Park Units</td>
<td>9</td>
</tr>
<tr>
<td>3</td>
<td>Aquatic Resources and Watershed Boundaries of Crater Lake National Park</td>
<td>18</td>
</tr>
<tr>
<td>4</td>
<td>Aquatic Resources and Watershed Boundaries of Lassen Volcanic National Park</td>
<td>22</td>
</tr>
<tr>
<td>5</td>
<td>Aquatic Resources and Watershed Boundaries of Lava Beds National Monument</td>
<td>26</td>
</tr>
<tr>
<td>6</td>
<td>Merrill Cave Ice Floor in (a) 1990 and (b) 1999</td>
<td>28</td>
</tr>
<tr>
<td>7</td>
<td>Aquatic Resources and Watershed Boundaries of Oregon Caves National Monument</td>
<td>30</td>
</tr>
<tr>
<td>8</td>
<td>Aquatic Resources and Watershed Boundaries of Redwood National and State Parks</td>
<td>33</td>
</tr>
<tr>
<td>9</td>
<td>Aquatic Resources and Watershed Boundaries of Whiskeytown National Recreation Area</td>
<td>39</td>
</tr>
</tbody>
</table>
EXECUTIVE SUMMARY

The Klamath Network (KLMN) is one of 32 National Park Service (NPS) networks responsible for developing vital signs-based monitoring programs for managing the long-term ecosystem health of the nation’s parks. The park units of the Klamath Network are Crater Lake National Park (CRLA), Lassen Volcanic National Park (LAVO), Lava Beds National Monument (LABE), Oregon Caves National Monument (ORCA), Redwood National and State Parks (RNSP), and Whiskeytown National Recreation Area (WHIS). National Park Service networks are required to formulate Vital Signs Monitoring Plans, consisting of three phases: Phase I compiles background information and data on network park unit resources and presents conceptual models for each park unit ecosystem; Phase II provides an augmented Phase I and the selection and prioritization of vital signs; and Phase III will include the entire scope of information in Phases I and II, as well as the monitoring objectives, sampling designs and protocols, and data management and analysis procedures of a long-term vital signs monitoring program. The Klamath Network Phase II Water Quality Report is intended to provide an overview of the previous water quality related inventory and monitoring work conducted in each of the network’s six park units and provide guidance in the direction of future monitoring objectives. The Phase II Report summarizes the activities undertaken to select vital signs to be used for monitoring the aquatic resources of Klamath Network park units.

The primary goal of the National Park Service Inventory & Monitoring (I&M) Program is to assess and monitor the long-term ecological health of park units. Other benefits of the program include the ability to detect change in resource condition and evaluate resource responses to management actions. Moreover, the program aims to create baseline knowledge of the condition of park unit resources for use by park unit scientists and those in academia or the private sector, and to create an effective method for data management, analysis, and reporting. Through information and data sharing the program hopes to increase public awareness of park unit activities and resources. The I&M program first focuses on inventories of park unit resources to assess the ecological health of the park units. While many aquatic resource-related inventories have been conducted within the Klamath Network, some fundamental inventories have not been completed. Then, given basic inventory data, a monitoring plan will be created to collect broad-based scientifically sound information on the current status and long-term trends in the health, composition, structure, and function of park unit ecosystems.

The I&M program was created through the Natural Resource Challenge, a method of improving natural resource stewardship in national parks. The Natural Resource Challenge requires managers to know the status or condition of natural resources under their stewardship and monitor long-term trends in those resources to conserve them unimpaired for future generations. Moreover, vital signs monitoring achieves the Category 1 goals found in the Government Performance and Results Act (GPRA) which requires that federal agencies account for money spent by reporting on the results of their activities.
To better understand and organize the information currently available about the aquatic resources of each park unit, the Klamath Network contracted the US Geological Survey to (1) compile background information on the primary aquatic resources of each network park unit, including past and current monitoring efforts, and (2) draft the Phase II Report. To date, over 100 aquatic inventory and monitoring related projects have occurred within Klamath Network park units and surrounding public lands. These projects include information on aquatic biota (e.g. amphibians, fishes, macroinvertebrates), baseline water quality (e.g. chemical and physical parameters), hydrological/ geological resources (e.g. surface flow, groundwater, geothermal/hydrothermal, ice in ice caves), recreation effects, land use impacts, and watershed restoration.

The Klamath Network, under the guidance of the National I&M Program, undertook the process of creating conceptual ecological models to help identify proposed candidate vital signs for selection and prioritization. Conceptual models formalize understanding of natural processes and facilitate a cross-discipline dialogue between scientists and resource managers. In addition, conceptual models provide an understanding of the structure, function, and interconnectedness of park unit ecosystems, enabling the identification of vital signs for assessing ecosystem health. Models were developed for freshwater and marine aquatic ecosystems found in Klamath Network park units. The conceptual modeling process also helped to identify many stressors that can potentially affect ecosystem components, patterns, and processes. Stressors, as defined by the I&M program, are forces of ecological change and can be of natural- or human-origin. The conceptual modeling process was particularly helpful in identifying proposed candidate vital signs that were not identified through other scoping processes.

The Klamath Network began in 1998 its scoping process to determine, or to prioritize, which vital signs the network should monitor. Initial park-specific Vital Signs Workshops were held between 1998 and 2003 to begin to identify stressors that potentially impact park unit ecosystems. These workshops were followed in 2004 by three network-wide workshops. The purpose of these workshops was to more specifically identify monitoring questions and vital signs associated with specific ecosystems and ecosystem categories (e.g., air, soil quality, hydrology, water quality, invasive species, etc.). The result of these workshops was the development of 172 monitoring questions and associated vital signs for the various park unit ecosystems. These monitoring questions and vital signs were sent out for review and prioritization by scientists/resource managers with research and management expertise related to park unit ecosystems; and two of the 10 most important network-wide vital signs monitoring questions identified were aquatic-resource focused. These two questions were: (1) what is the status and what are the trends of surface waters and pollutants; and (2) what is the status and what are the trends in structure, function and composition of locally limited (i.e., focal) aquatic communities?

The dominant theme during the initial identification of network-wide water quality issues was aquatic ecosystem health. The ability to (1) document improvement (or lack thereof) in the water quality of Clean Water Act section 303(d) listed impaired streams, and (2) the ability of park unit managers to document progress toward achieving GPRA goal 1.a4 (i.e., that parks have unimpaired water quality), underscored the importance of
identifying a suite of vital signs useful for effective water quality assessment. The need to fully inventory aquatic resources and document baseline and reference water quality conditions also were identified as important objectives in the development of a vital signs-based long-term water quality monitoring program.

Detailed assessment and refinement of priority issues specific to Klamath Network water quality and the two aquatic resource-focused monitoring questions began in October 2004. The process was initiated by sending a questionnaire regarding aquatic resources and water quality to the Chief of Resources Management of each park unit. Park-specific information was sought in five basic categories: (1) identification of aquatic resources within park unit boundaries (i.e., marine, estuarine, lotic, lentic, palustrine, ice caves, and geothermal/ hydrothermal); (2) a list of water bodies of particular importance or interest to the park unit management; (3) a list of past and current water quality monitoring efforts; (4) a list of water resource management and/or land use issues that impact resources from either within or outside each park unit; and (5) qualification of the level of knowledge and experience of park unit staff in monitoring water quality. Questionnaire responses were summarized into preliminary park-specific Vital Signs Tables that included columns for: (1) Aquatic Resource; (2) Potential Resource Stressors; (3) Potential Indicators of Stress; (4) Potential Monitoring Options; and (5) Stressor Priority. The tables were reviewed and refined at an aquatic resources vital signs scoping session held in December 2004. Park unit staff identified the five most significant water quality resource management issues and aquatic resource stressors for each park unit (i.e., climate change, land use and non-recreational human impacts, introduced/invasive non-native biota, visitor recreational activities, and atmospheric deposition of nutrients and pollutants). In addition, the assessment process was instrumental for identifying indicators (or vital signs) of aquatic resource stress, relative to the five identified stressors, and potential monitoring options for quantifying ecosystem health and/or disturbance. The park-specific and network-level results of this process are discussed in detail on pages 57-85.
INTRODUCTION

The Klamath Network (KLMN) Water Quality Report is intended to provide a broad overview of aquatic resources at the network and park unit levels. Figure 1 is an example of one type of aquatic resource present in Klamath Network park units, and is representative of inland montane lakes within the network. The report begins with an overview of aquatic resources of the Klamath Network and includes identification of the locations of active monitoring stations in or near park units where various parameters (e.g., precipitation, evaporation, temperature, general water quality) are measured. This overview is followed by a general discussion of past and present water quality inventory, monitoring, and research activities in each park unit, a list of references associated with these activities, and a review of common (i.e., network-wide) water quality inventory, monitoring, and research themes related to these activities. Past and present monitoring and research programs of allied agencies in the KLMN region are then discussed followed by a detailed review of the Klamath Network Vital Signs Scoping Process and park-specific/network-level outcomes. The final section of the report presents park-specific responses to the Aquatic Resources and Water Quality Questionnaire solicited from each park unit.
FIGURE 2: Klamath Network park units: Crater Lake National Park (CRLA), Lassen Volcanic National Park (LAVO), (Lava Beds National Monument (LABE), Oregon Caves National Monument (ORCA), Redwood National and State Parks (RNSP), and Whiskeytown National Recreation Area (WHIS). LAVO, LABE, and ORCA are the park units that have been selected for the current baseline inventory.

SECTION 1: OVERVIEW OF KLAMATH NETWORK AQUATIC RESOURCES

The Klamath Network park units (Figure 2) occur in a rugged region of exceptional and complex climate, topography, and geology; and the aquatic resources within the network are very diverse. Crater Lake National Park (Crater Lake) is responsible for managing the clearest and seventh deepest (592 m, 1942 ft) caldera lake in the world. In addition, Crater Lake contains deep lake thermal areas, small ponds outside of the Mt. Mazama caldera, numerous streams and springs, and several important wetland areas. Lassen Volcanic National Park (Lassen) includes the largest concentration of freshwater lentic systems in the network, with over 250 ponds and lakes (many of which have never been inventoried), as well as several major stream drainages, geothermal areas, and sphagnum
bogs along lake margins. Lava Beds National Monument (Lava Beds) has limited surface water, although Tule Lake and the Tule Lake Wildlife Refuge are present near the northern border of the Monument. Lava Beds does, however, have approximately 28 known ice caves that are an important source of water for wildlife and, historically, for humans. Oregon Caves National Monument (Oregon Caves) is a small unit with only one stream, Cave Creek. The creek flows through the main cave and wet meadows, and seeps are present in the upper canyon of the creek. Parts of Cave Creek are directly affected by visitors touring the cave. Redwood National and State Parks (Redwoods) have marine and freshwater aquatic resources. Marine resources include over 60 km (36 mi) of coastal marine habitat extending 0.4 km (0.25 mi) offshore and coastal estuaries and lagoons. Freshwater resources include Redwood and Mill Creeks and their watersheds, and slope fens and seeps. Whiskeytown National Recreation Area (Whiskeytown) contains a large reservoir (Whiskeytown Lake) created by the damming of Clear Creek, as well as many perennial and intermittent tributary streams. Historically, mining was a common enterprise within WHIS and as a result acid mine drainage and mercury contamination are of major concern. WHIS also contains the only known global population of Howell’s alkali grass (\textit{Puccinellia howellii}) which is restricted to a mesosaline fen in the park.

\textbf{National Park Service Water Resources Division Baseline Water Quality Inventory}

The baseline water quality inventory is part of a National Park Service Water Resources Division program to develop baseline water-quality information for key resources in National Park Service units throughout the United States. A Klamath Network baseline inventory is in progress (i.e., 2005) at Lava Beds, Lassen, and Oregon Caves. The inventory is being conducted by personnel from the USGS Western Ecological Research Center located in Arcata, California. The following parameters have been measured for all water bodies selected for the inventory during the first of two sampling seasons scheduled to begin in 2005: alkalinity, dissolved oxygen, pH, specific conductance, temperature and discharge (where applicable). Additional parameters measured for select water bodies include fecal and total coliform, chloride, fluoride, nitrate and sulfate.

\textbf{Outstanding Natural Resource Waters}

There are no designated Outstanding Natural Resource Waters (ONRW) within the Klamath Network. Crater Lake National Park and network staff are, however, in the process of obtaining ONRW designation for Crater Lake from the Oregon Department of Environmental Quality.

The North Coast Regional Water Quality Control Board has identified Redwoods as a State Water Quality Protection Area as designated by the California State Water Board. Also, there are several Redwoods marine areas designated as Areas of Special Biological Significance by the State of California. The coast off Redwoods is part of a California Marine Sanctuary, and Redwoods has a California State Lands Commission Submerged Lands Lease to conduct resource management activities.
Wild and Scenic Rivers in the Klamath Network Region

(All of the information contained in this subsection is from the National Wild and Scenic Rivers website: http://www.nps.gov/rivers/wildriverslist.html.)

1. Eel River:
 A. **Designated Reach**: January 19, 1981. From the mouth of the river to 100 yards below Van Ardsdale Dam. The Middle Fork from its confluence with the main stem to the southern boundary of the Yolla Bolly Wilderness Area. The South Fork from its confluence with the main stem to the Section Four Creek confluence. The North Fork from its confluence with the main stem to Old Gilman Ranch. The Van Duzen River from the confluence with the Eel River to Dinsmore Bridge.
 B. **Classification/Mileage**: Wild – 156 km (97 mi); Scenic – 45 km (28 mi); Recreational – 440 km (273 mi); Total – 642 km (398 mi).
 C. **Managing Agencies**: California Resources Agency, Bureau of Land Management; Six Rivers National Forest; Mendocino National Forest; Round Valley Reservation.

2. Klamath River:
 A. **Designated Reach**: January 19, 1981. From the mouth to 1,097 m (3,600 ft) below Iron Gate Dam. The Salmon River from its confluence with the Klamath to the confluence of the North and South Forks of the Salmon River. The North Fork of the Salmon River from the Salmon River confluence to the southern boundary of the Marble Mountain Wilderness Area. The South Fork of the Salmon River from the Salmon River confluence to the Cecilville Bridge. The Scott River from its confluence with the Klamath to its confluence with Schackleford Creek. All of Wooley Creek.
 B. **Classification/Mileage**: Wild – 19 km (12 mi); Scenic – 39 km (24 mi); Recreational – 403 km (250 mi); Total – 461 km (286 mi).
 C. **Managing Agencies**: California Resources Agency; Yurok Tribe; Hoopa Valley Indian Reservation; Klamath National Forest; Bureau of Land Management.

3. Smith River:
 A. **Designated Reach**: January 19, 1981 and November 16, 1990. The segment from the confluence of the Middle Fork Smith River and the North Fork Smith River to its mouth at the Pacific Ocean. The Middle Fork from its the headwaters to its confluence with the North Fork Smith River, including Myrtle Creek, Shelly Creek, Kelly Creek, Packsaddle Creek, the East Fork of Patrick Creek, the West Fork Patrick Creek, Little Jones Creek, Griffin Creek, Knopki Creek, Monkey Creek, Patrick Creek, and Hardscrabble Creek. The Siskiyou from its headwaters to its confluence with the Middle Fork, including the South Siskyou Fork of the Smith River. The South Fork from its headwaters to its confluence with the main...
stem, including Williams Creek, Eightmile Creek, Harrington Creek, Prescott Fork, Quartz Creek, Jones Creek, Hurdygurdy Creek, Gordon Creek, Coon Creek, Craigs Creek, Goose Creek, the East Fork of Goose Creek, Buch Creek, Muzzleloader Creek, Canthook Creek, Rock Creek, and Blackhawk Creek. The North Fork from the California-Oregon border to its confluence with the Middle Fork of the Smith River, including Diamond Creek, Bear Creek, Still Creek, the North Fork of Diamond Creek, High Plateau Creek, Stony Creek, and Peridotite Creek.

B. **Classification/Mileage:** Wild – 126 km (78 mi); Scenic – 50 km (31 mi); Recreational – 348 km (216 mi); Total – 524 km (325 mi).

C. **Managing Agencies:** California Resources Agency; Smith River National Recreation Area

4. Trinity River:

A. **Designated Reach:** January 19, 1981. From the confluence with the Klamath River to 91 m (300 ft) below Lewiston Dam. The North Fork from the Trinity River confluence to the southern boundary of the Salmon-Trinity Primitive Area. The South Fork from the Trinity River confluence to the California State Highway 36 bridge crossing. The New River from the Trinity River confluence to the Salmon-Trinity Primitive Area.

B. **Classification/Mileage:** Wild – 71 km (44 mi); Scenic – 63 km (39 mi); Recreational – 194 km (120 mi); Total – 327 km (203 mi).

C. **Managing Agencies:** California Resources Agency; Hoopa Valley Indian Reservation; Yurok Tribe; Shasta-Trinity National Forest; Six Rivers National Forest; Bureau of Land management

Clean Water Act Section 303(d) Impaired Waters

Table 1 lists the 303(d) impaired waters within the Klamath Network. Redwood Creek and the Klamath River in Redwoods are listed due to impacts associated with upstream land use practices; in particular, road building, reduced land cover as a result of logging, and dams. In Whiskeytown, Willow Creek (associated with past mining activities) and designated swim beaches of Whiskeytown Lake are listed as 303(d) impaired waters. Whiskeytown Staff are in the process of having the swim beaches delisted. A full discussion of the CWA Section 303(d) listing and Total Maximum Daily Load (TMDL) program process can be found at the following EPA web site: http://www.epa.gov/owow/tmdl/.
TABLE 1: KLAMATH NETWORK 303(d) LISTED IMPAIRED WATER BODIES.

<table>
<thead>
<tr>
<th>303(d) Impaired Water</th>
<th>Pollutant/Stressor</th>
<th>TMDL Priority*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Klamath River (RNSP)</td>
<td>Temperature High</td>
<td>High</td>
</tr>
<tr>
<td></td>
<td>Nutrients High</td>
<td></td>
</tr>
<tr>
<td>Redwood Creek (RNSP)</td>
<td>Temperature Low</td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td>Sedimentation/Siltation</td>
<td>Medium</td>
</tr>
<tr>
<td>Willow Creek (WHIS)</td>
<td>Metals Low</td>
<td>Low</td>
</tr>
<tr>
<td>Swim Beaches (WHIS)</td>
<td>Bacteria Low</td>
<td>Low</td>
</tr>
</tbody>
</table>

* See the EPA web site: http://www.epa.gov/owow/tmdl/ for a description of the TMDL (Total Maximum Daily Loads) process.

Aquatic Species of Special Concern

In 2002, the Klamath Network began an inventory of vascular plants and vertebrate species of special concern in network park units (Acker et al. 2001). Aquatic vertebrate species of concern at the network-level include nine amphibian, five reptile, and four fish species. The study plan for this inventory is available at: http://www1.nature.nps.gov/im/units/klmn/inventories/download_files/inventory_study_plan.doc.

SECTION 2: LOCATIONS OF ACTIVE MONITORING STATIONS IN THE KLAMATH NETWORK REGION

Tables 2-7 list the locations of geo-referenced climatic and hydrologic monitoring stations in or near Klamath Network park units. In addition to these monitoring stations, past water quality sampling sites in or near Lassen, Lava Beds, Oregon Caves and Whiskeytown are listed in a Horizon Report for each park unit (i.e., LAVO = NPS-WRD 1999a, pages 51-54; LABE = NPS-WRD 1999b, page 39; ORCA = NPS-WRD 1998, page 45; WHIS = NPS-WRD 2000, pages 45-47). Horizon Reports have not been completed for Crater Lake and Redwoods. The Horizon Reports are baseline water quality data inventories that detail historical water quality sampling and monitoring efforts in network park units. These reports have been developed by the National Park Service Water Resources Division and Service-wide Inventory and Monitoring Program. The network will emphasize verifying and geo-referencing additional locations and will link spatial files with corresponding tabular records in the NPS database for cataloging datasets and related metadata.
Table 2: Daily Precipitation Monitoring Stations as of 2005 in the NPS Klamath Network Region

<table>
<thead>
<tr>
<th>Site</th>
<th>Latitude</th>
<th>Longitude</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRLA Headquarters</td>
<td>42.90000</td>
<td>-122.13333</td>
<td>OR</td>
</tr>
<tr>
<td>Crescent City</td>
<td>41.73333</td>
<td>-124.20000</td>
<td>CA</td>
</tr>
<tr>
<td>Crescent City 1N</td>
<td>41.76666</td>
<td>-124.06666</td>
<td>CA</td>
</tr>
<tr>
<td>Crescent City 1N</td>
<td>41.76666</td>
<td>-124.20000</td>
<td>CA</td>
</tr>
<tr>
<td>Crescent City 7ENE</td>
<td>41.78333</td>
<td>-124.08333</td>
<td>CA</td>
</tr>
<tr>
<td>Crescent City 7ENE</td>
<td>41.80000</td>
<td>-124.08333</td>
<td>CA</td>
</tr>
<tr>
<td>Crescent City 7ENE</td>
<td>41.80000</td>
<td>-124.23333</td>
<td>CA</td>
</tr>
<tr>
<td>Fort Dick</td>
<td>41.88333</td>
<td>-124.13333</td>
<td>CA</td>
</tr>
<tr>
<td>Fort Dick</td>
<td>41.88333</td>
<td>-124.15000</td>
<td>CA</td>
</tr>
<tr>
<td>Fort Dick</td>
<td>41.86666</td>
<td>-124.13333</td>
<td>CA</td>
</tr>
<tr>
<td>French Gulch</td>
<td>40.70000</td>
<td>-122.66666</td>
<td>CA</td>
</tr>
<tr>
<td>Klamath</td>
<td>41.51666</td>
<td>-124.03333</td>
<td>CA</td>
</tr>
<tr>
<td>LABE</td>
<td>41.73333</td>
<td>-121.51666</td>
<td>CA</td>
</tr>
<tr>
<td>Manzanita Lake-LAVO</td>
<td>40.53333</td>
<td>-121.56666</td>
<td>CA</td>
</tr>
<tr>
<td>Mineral</td>
<td>40.35000</td>
<td>-121.60000</td>
<td>CA</td>
</tr>
<tr>
<td>Mineral</td>
<td>40.35000</td>
<td>-121.58333</td>
<td>CA</td>
</tr>
<tr>
<td>Ono</td>
<td>40.48333</td>
<td>-122.61666</td>
<td>CA</td>
</tr>
<tr>
<td>Orick Prairie Creek Park</td>
<td>41.33333</td>
<td>-124.01666</td>
<td>CA</td>
</tr>
<tr>
<td>Orick Prairie Creek Park</td>
<td>41.36666</td>
<td>-124.01666</td>
<td>CA</td>
</tr>
<tr>
<td>Redding</td>
<td>40.58333</td>
<td>-122.40000</td>
<td>CA</td>
</tr>
<tr>
<td>Shasta Dam</td>
<td>40.71666</td>
<td>-122.46666</td>
<td>CA</td>
</tr>
<tr>
<td>Shingletown 2 E</td>
<td>40.50000</td>
<td>-121.26666</td>
<td>CA</td>
</tr>
<tr>
<td>Volta Power Station</td>
<td>40.46666</td>
<td>-121.56666</td>
<td>CA</td>
</tr>
<tr>
<td>Whiskeytown Reservoir</td>
<td>40.61666</td>
<td>-122.53333</td>
<td>CA</td>
</tr>
<tr>
<td>Williams 1 N</td>
<td>42.20000</td>
<td>-123.28333</td>
<td>OR</td>
</tr>
</tbody>
</table>

Table 3: Hourly Precipitation Monitoring Stations as of 2005 in the NPS Klamath Network Region

<table>
<thead>
<tr>
<th>Site</th>
<th>Latitude</th>
<th>Longitude</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brandy Creek</td>
<td>40.61666</td>
<td>-122.70000</td>
<td>CA</td>
</tr>
<tr>
<td>CRLA Headquarters</td>
<td>42.90000</td>
<td>-122.13333</td>
<td>OR</td>
</tr>
<tr>
<td>Crescent City MNTC Station</td>
<td>41.75000</td>
<td>-124.20000</td>
<td>CA</td>
</tr>
<tr>
<td>Klamath</td>
<td>41.51666</td>
<td>-124.03333</td>
<td>CA</td>
</tr>
<tr>
<td>Mineral</td>
<td>40.35000</td>
<td>-121.60000</td>
<td>CA</td>
</tr>
<tr>
<td>Mineral</td>
<td>40.35000</td>
<td>-121.58333</td>
<td>CA</td>
</tr>
<tr>
<td>Sawyers Bar Ranger Station</td>
<td>41.30000</td>
<td>-123.98333</td>
<td>CA</td>
</tr>
<tr>
<td>Shasta Dam</td>
<td>40.50000</td>
<td>-121.26666</td>
<td>CA</td>
</tr>
<tr>
<td>Volta Power Station</td>
<td>40.46666</td>
<td>-121.56666</td>
<td>CA</td>
</tr>
<tr>
<td>Williams 1 N</td>
<td>42.20000</td>
<td>-123.28333</td>
<td>OR</td>
</tr>
</tbody>
</table>
Table 4: Evaporation Monitoring Stations as of 2005 in the NPS Klamath Network Region

<table>
<thead>
<tr>
<th>Site</th>
<th>Latitude</th>
<th>Longitude</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brandy Creek</td>
<td>40.61666</td>
<td>-122.70000</td>
<td>CA</td>
</tr>
<tr>
<td>Crescent City MNTC Station</td>
<td>41.75000</td>
<td>-124.20000</td>
<td>CA</td>
</tr>
<tr>
<td>Klamath</td>
<td>41.51666</td>
<td>-124.03333</td>
<td>CA</td>
</tr>
<tr>
<td>Mineral</td>
<td>40.35000</td>
<td>-121.60000</td>
<td>CA</td>
</tr>
<tr>
<td>Mineral</td>
<td>40.35000</td>
<td>-121.58333</td>
<td>CA</td>
</tr>
<tr>
<td>Sawyers Bar Ranger Station</td>
<td>41.30000</td>
<td>-123.98333</td>
<td>CA</td>
</tr>
<tr>
<td>Shasta Dam</td>
<td>40.71666</td>
<td>-122.46666</td>
<td>CA</td>
</tr>
<tr>
<td>Volta Power Station</td>
<td>40.46666</td>
<td>-121.56666</td>
<td>CA</td>
</tr>
<tr>
<td>Whiskeytown Reservoir</td>
<td>40.61666</td>
<td>-122.53333</td>
<td>CA</td>
</tr>
</tbody>
</table>

Table 5: Air Temperature Monitoring Stations as of 2005 in the NPS Klamath Network Region

<table>
<thead>
<tr>
<th>Site</th>
<th>Latitude</th>
<th>Longitude</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRLA Headquarters</td>
<td>42.90000</td>
<td>-122.13333</td>
<td>OR</td>
</tr>
<tr>
<td>Crescent City</td>
<td>41.73333</td>
<td>-124.20000</td>
<td>CA</td>
</tr>
<tr>
<td>Crescent City 1N</td>
<td>41.76666</td>
<td>-124.06666</td>
<td>CA</td>
</tr>
<tr>
<td>Crescent City 1N</td>
<td>41.76666</td>
<td>-124.20000</td>
<td>CA</td>
</tr>
<tr>
<td>Klamath</td>
<td>41.51666</td>
<td>-124.03333</td>
<td>CA</td>
</tr>
<tr>
<td>Labe</td>
<td>41.73333</td>
<td>-121.51666</td>
<td>CA</td>
</tr>
<tr>
<td>Manzanita Lake-Lavo</td>
<td>40.53333</td>
<td>-121.56666</td>
<td>CA</td>
</tr>
<tr>
<td>Mineral</td>
<td>40.35000</td>
<td>-121.60000</td>
<td>CA</td>
</tr>
<tr>
<td>Mineral</td>
<td>40.35000</td>
<td>-121.58333</td>
<td>CA</td>
</tr>
<tr>
<td>Orick Prairie Creek Park</td>
<td>41.33333</td>
<td>-124.01666</td>
<td>CA</td>
</tr>
<tr>
<td>Redding</td>
<td>40.58333</td>
<td>-122.40000</td>
<td>CA</td>
</tr>
<tr>
<td>Shasta Dam</td>
<td>40.71666</td>
<td>-122.46666</td>
<td>CA</td>
</tr>
<tr>
<td>Whiskeytown Reservoir</td>
<td>40.61666</td>
<td>-122.53333</td>
<td>CA</td>
</tr>
</tbody>
</table>

Table 6: Drinking Water Intakes as of 2005 in the NPS Klamath Network Region

<table>
<thead>
<tr>
<th>Site</th>
<th>Latitude</th>
<th>Longitude</th>
<th>Agency</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cave Junction-Illinois river</td>
<td>42.16111</td>
<td>-123.65000</td>
<td>City of Cave Junction</td>
<td>OR</td>
</tr>
<tr>
<td>Cave Junction Treatment Plant</td>
<td>42.15000</td>
<td>-123.63330</td>
<td>City of Cave junction</td>
<td>OR</td>
</tr>
<tr>
<td>Shasta Treatment Plant</td>
<td>40.58333</td>
<td>-122.48330</td>
<td>Shasta Comm Ser Dist</td>
<td>CA</td>
</tr>
<tr>
<td>Whiskeytown Reservoir</td>
<td>40.59917</td>
<td>-122.53830</td>
<td>Clear Creek Comm Ser Dist</td>
<td>CA</td>
</tr>
<tr>
<td>Whiskeytown Reservoir</td>
<td>40.59333</td>
<td>-122.46610</td>
<td>Shasta Comm Ser Dist</td>
<td>CA</td>
</tr>
</tbody>
</table>
Table 7: Stream Gaging Stations as of 2005 in the Klamath Network Region

<table>
<thead>
<tr>
<th>Site</th>
<th>Latitude</th>
<th>Longitude</th>
<th>Agency</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td>Althouse Creek</td>
<td>42.08055</td>
<td>-123.51388</td>
<td>USGS</td>
<td>OR</td>
</tr>
<tr>
<td>Althouse Creek near Holland</td>
<td>42.10000</td>
<td>-123.52500</td>
<td>USGS</td>
<td>OR</td>
</tr>
<tr>
<td>Benner Creek</td>
<td>40.38388</td>
<td>-121.27333</td>
<td>USGS</td>
<td>CA</td>
</tr>
<tr>
<td>Butte Creek</td>
<td>40.64972</td>
<td>-121.27972</td>
<td>USGS</td>
<td>CA</td>
</tr>
<tr>
<td>Clear Creek at French Gulch</td>
<td>40.69500</td>
<td>-122.63555</td>
<td>USGS</td>
<td>CA</td>
</tr>
<tr>
<td>Clear Creek near Igo</td>
<td>40.51333</td>
<td>-122.52305</td>
<td>USGS</td>
<td>CA</td>
</tr>
<tr>
<td>Clear Creek near Shasta</td>
<td>40.62917</td>
<td>-122.56111</td>
<td>USGS</td>
<td>CA</td>
</tr>
<tr>
<td>East Fork Illinois River near Takilma</td>
<td>42.00278</td>
<td>-123.62500</td>
<td>USGS</td>
<td>OR</td>
</tr>
<tr>
<td>Elk Creek near Obrien</td>
<td>42.03166</td>
<td>-123.73666</td>
<td>BLM</td>
<td>OR</td>
</tr>
<tr>
<td>Elk Creek near Obrien</td>
<td>42.03167</td>
<td>-123.73666</td>
<td>USGS</td>
<td>OR</td>
</tr>
<tr>
<td>Illinois River at Kirby</td>
<td>42.19722</td>
<td>-123.65555</td>
<td>USGS</td>
<td>OR</td>
</tr>
<tr>
<td>Judge Francis Carr Powerhouse</td>
<td>40.64694</td>
<td>-122.62611</td>
<td>USGS</td>
<td>CA</td>
</tr>
<tr>
<td>Manzanita Creek-LAVO</td>
<td>40.53556</td>
<td>-121.57666</td>
<td>USGS</td>
<td>CA</td>
</tr>
<tr>
<td>Mill Creek near Mineral</td>
<td>40.35917</td>
<td>-121.50277</td>
<td>USGS</td>
<td>CA</td>
</tr>
<tr>
<td>South Fork Bailey Creek</td>
<td>40.47918</td>
<td>-121.59610</td>
<td>USGS</td>
<td>CA</td>
</tr>
<tr>
<td>Sucker Creek/Grayback Creek</td>
<td>42.15972</td>
<td>-123.47777</td>
<td>USGS</td>
<td>OR</td>
</tr>
<tr>
<td>Sucker Creek near Holland</td>
<td>42.15000</td>
<td>-123.46666</td>
<td>USGS</td>
<td>OR</td>
</tr>
<tr>
<td>Summit Creek near Mineral</td>
<td>40.36972</td>
<td>-121.53971</td>
<td>USGS</td>
<td>CA</td>
</tr>
<tr>
<td>West Fork Illinois River/Rock Creek</td>
<td>42.03888</td>
<td>-123.74722</td>
<td>USGS</td>
<td>OR</td>
</tr>
<tr>
<td>West Fork Illinois River near Obrien</td>
<td>42.06388</td>
<td>-123.71666</td>
<td>USGS</td>
<td>OR</td>
</tr>
<tr>
<td>West Fork Illinois River</td>
<td>42.05972</td>
<td>-123.72916</td>
<td>USGS</td>
<td>OR</td>
</tr>
<tr>
<td>Whiskeytown Lake</td>
<td>40.61750</td>
<td>-122.52527</td>
<td>USBR</td>
<td>CA</td>
</tr>
<tr>
<td>Whiskeytown Lake</td>
<td>40.61750</td>
<td>-122.52527</td>
<td>USGS</td>
<td>CA</td>
</tr>
<tr>
<td>Whiskeytown Lake</td>
<td>40.61666</td>
<td>-122.53333</td>
<td>USBR</td>
<td>CA</td>
</tr>
<tr>
<td>Windy Creek near Holland</td>
<td>42.13055</td>
<td>-123.36250</td>
<td>USGS</td>
<td>OR</td>
</tr>
</tbody>
</table>
SECTION 3: PAST INVENTORY, MONITORING, AND RESEARCH ACTIVITIES IN THE
KLAMATH NETWORK PARK UNITS

In this section, past and ongoing water resources inventory, monitoring and research
activities in each park unit are summarized based on information gathered from available
project and study reports. A Horizon Report (or Technical Report of Baseline Water
Quality Information and Analysis compiled by the National Park Service’s Water
Resources Division) has also been completed for four network park units (LAVO, LABE,
ORCA, and WHIS). Each report contains information from several sources, including:
(1) Storage and Retrieval (STORET) water quality database management system; (2)
River Reach File (RF3); (3) Industrial Facilities Discharge (IFD); (4) Drinking Water
Supplies (DRINKS); (5) Water Gages (GAGES); and (6) Water Impoundments (DAMS).
Each report provides: (1) a complete inventory of all retrieved water quality stations and
parameter data, and the entities responsible for data collection; (2) descriptive statistics
and appropriate graphical plots of water quality data characterizing period of record,
annual, and seasonal central tendencies and trends; (3) a comparison of the park's water
quality data to relevant EPA and WRD water quality screening criteria; and (4) an
Inventory Data Evaluation and Analysis (IDEA) to determine what Service-wide
Inventory and Monitoring Program "Level I" water quality parameters have been
measured within each study area. Core freshwater parameters include water temperature,
specific conductance, pH, dissolved oxygen, qualitative assessment of flow/discharge at
lotic sites, and qualitative assessment of stage/level at lentic sites. Marine/estuarine
ecosystem core parameters include water temperature, dissolved oxygen, pH,
conductivity, and salinity. Horizon Reports can be downloaded from the National Park
Service’s Water Resource Division web site at:
(http://www.nature.nps.gov/water/horizon.htm).

Klamath Network park units have completed, at minimum, partial inventories of park
unit-specific aquatic resources and short-term water quality sampling and monitoring of
these resources. The descriptions of past inventory, monitoring, and research activities in
each park unit also highlight future network-wide inventory, monitoring, and research
needs. It is clear that not all aquatic resources in each park unit have been fully
inventoried nor have present baseline water quality conditions been fully determined.
These baseline conditions include documentation of the physical, chemical and biological
characteristics of each water resource-type. Once these present baseline conditions are
determined, appropriate resource sampling designs can then be used to more effectively
monitor for potential resource-specific changes. The need for consistent freshwater
inventory and monitoring techniques across park units has been identified as an important
part of any network-wide program. Consistent sampling design and sample collection
will facilitate the comparison and interpretation of water quality monitoring results
among park units. Additional important future inventory and monitoring activities
include: (1) development of a general monitoring program for Redwoods marine
ecosystems; (2) inventories of wetland biota; (3) salmonid fisheries monitoring; (4)
amphibian monitoring; and (5) benthic macroinvertebrate studies.
General Summary of Past Activities: Crater Lake National Park has focused primarily on monitoring the water quality of Crater Lake. A long-term lake monitoring program has been active since 1983. Less comprehensive water quality inventories have been completed for ponds/lakes and streams located outside of the Mt. Mazama caldera. A Sun Creek bull trout restoration project and a survey of amphibians in the Whitehorse Ponds have also been initiated and/or completed.

Crater Lake National Park (Figure 3) was established by Presidential Proclamation on May 22, 1902. The 74,140 ha (182,304 ac) park is located at the southern end of the Cascade Mountains in south-central Oregon. The park is dominated by a large natural caldera lake formed after the eruption of Mt. Mazama, approximately 7700 years ago (Ramsey et al. 2003; accessed June 6, 2005 at http://geopubs.wr.usgs.gov/i-map/i2790/i2790.pdf). The lake that is now in existence usually fluctuates seasonally between 1881 and 1882 m (573 – 574 ft) in surface elevation. However, fluctuations of up to five meters have been recorded (Redmond 1990). Crater Lake is the clearest and seventh deepest lake (592 m, 1942 ft) in the world, and has a strikingly deep blue color. Secchi disk clarity readings have been recorded as deep as 40 m (131 ft).
The water quality of Crater Lake and other freshwater resources in Crater Lake National Park has been an important management focus for over 100 years. Water quality monitoring of Crater Lake began in 1892 when Diller and Patton initiated the recording of Crater Lake water level (Larson 1987). Numerous inventory, monitoring, and research projects and programs have been completed or are being conducted within the caldera and focused on Crater Lake, or at sites located outside of the caldera.

Intra-Caldera Monitoring and Research

Monitoring and research activities from 1892-1984 that were designed to document the physical, chemical, and biological characteristics of Crater Lake are listed in Table 8. Most of these activities were of short duration and limited in scope (Larson 1987). A long-term Crater Lake water quality monitoring program, that is now 22 years old, was initiated in June 1983. Sampling has been most often conducted during July, August, and September, however, sampling also has been conducted in January, March, April, May, June, and October. Samples for the determination of lake water quality have been collected at predetermined depths from 0–550 m, and from intra-caldera springs (Larson 1987, 1990, 1996). Initially, up to 41 springs were sampled, but this number was reduced to five springs beginning in 1990. Water quality variables monitored as part of the long-term monitoring program (1983-present) are listed in Table 9. Introduced rainbow trout (*Oncorhynchus mykiss*) and kokanee salmon (*Oncorhynchus nerka*) have also been studied as part of the monitoring program. Detailed information concerning the long-term water quality monitoring program is available in Larson 1987, 1990, and 1996.

Table 8: Highlights of Crater Lake Monitoring and Research Activities, 1892-1984 (from Larson 1987)

<table>
<thead>
<tr>
<th>Date</th>
<th>Activities</th>
</tr>
</thead>
<tbody>
<tr>
<td>1892</td>
<td>Water level records initiated</td>
</tr>
<tr>
<td>1896</td>
<td>First scientific expedition (temperature and transparency)</td>
</tr>
<tr>
<td>1912</td>
<td>First chemical analysis (one sample from a depth of 2 m)</td>
</tr>
<tr>
<td>1913</td>
<td>Temperature, dissolved oxygen, Secchi disk, phytoplankton and zooplankton</td>
</tr>
<tr>
<td>1935</td>
<td>Optical properties (color)</td>
</tr>
<tr>
<td>1934-1936</td>
<td>Temperature, light transmission, and general floral and faunal surveys</td>
</tr>
<tr>
<td>1937-1940</td>
<td>Temperature, Secchi disk, and fish investigations</td>
</tr>
<tr>
<td>1938-1939</td>
<td>Secchi disk</td>
</tr>
<tr>
<td>1940</td>
<td>Temperature, dissolved oxygen, carbon dioxide, light transmission, nutrients and phytoplankton</td>
</tr>
<tr>
<td>1947/1950</td>
<td>Diatoms</td>
</tr>
<tr>
<td>1954</td>
<td>Secchi disk</td>
</tr>
<tr>
<td>1959</td>
<td>Morphometry</td>
</tr>
<tr>
<td>1960</td>
<td>Sediments evaluated</td>
</tr>
<tr>
<td>1961-1964</td>
<td>Stage height and temperature recorders installed, chemical analysis</td>
</tr>
<tr>
<td>1966</td>
<td>Temperature and general observations of surface current patterns</td>
</tr>
<tr>
<td>1967-1969</td>
<td>Distribution patterns and population dynamics of zooplankton, physical and chemical limnological characteristics, primary production and chlorophyll-a</td>
</tr>
<tr>
<td>1978-1981</td>
<td>General limnological characteristics with emphasis on phytoplankton distribution and abundance</td>
</tr>
<tr>
<td>1982-1984</td>
<td>Baseline monitoring program underway (physical, chemical, phytoplankton, with chemical and bacterial studies of caldera wall springs; hydrothermal springs located on lake bottom; sedimentation studies initiated</td>
</tr>
</tbody>
</table>
Table 9: Crater Lake and Intracaldera Springs Water Quality Variables Monitored as Part of the Crater Lake Long-Term Monitoring Program (1983-Present)

<table>
<thead>
<tr>
<th>Variable</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature</td>
<td>Lake and Spring</td>
</tr>
<tr>
<td>Lake level</td>
<td>Lake</td>
</tr>
<tr>
<td>Secchi disk depth</td>
<td>Lake</td>
</tr>
<tr>
<td>Light transmission and penetration</td>
<td>Lake</td>
</tr>
<tr>
<td>pH</td>
<td>Lake and Spring</td>
</tr>
<tr>
<td>Alkalinity</td>
<td>Lake and Spring</td>
</tr>
<tr>
<td>Specific conductance</td>
<td>Lake and Spring</td>
</tr>
<tr>
<td>Dissolved oxygen</td>
<td>Lake</td>
</tr>
<tr>
<td>Total phosphorus</td>
<td>Lake and Spring</td>
</tr>
<tr>
<td>Orthophosphate</td>
<td>Lake and Spring</td>
</tr>
<tr>
<td>Nitrate-nitrogen</td>
<td>Lake and Spring</td>
</tr>
<tr>
<td>Total Kjeldahl nitrogen</td>
<td>Lake and Spring</td>
</tr>
<tr>
<td>Ammonia-nitrogen</td>
<td>Lake and Spring</td>
</tr>
<tr>
<td>Sulfate</td>
<td>Lake and Spring</td>
</tr>
<tr>
<td>Silica</td>
<td>Lake and Spring</td>
</tr>
<tr>
<td>Chloride</td>
<td>Lake and Spring</td>
</tr>
<tr>
<td>Sodium</td>
<td>Lake and Spring</td>
</tr>
<tr>
<td>Calcium</td>
<td>Lake and Spring</td>
</tr>
<tr>
<td>Magnesium</td>
<td>Lake and Spring</td>
</tr>
<tr>
<td>Potassium</td>
<td>Lake and Spring</td>
</tr>
<tr>
<td>Sulfur</td>
<td>Lake and Spring</td>
</tr>
<tr>
<td>Iron</td>
<td>Lake and Spring</td>
</tr>
<tr>
<td>Bacterial studies</td>
<td>Lake</td>
</tr>
<tr>
<td>Chlorophyll-a</td>
<td>Lake</td>
</tr>
<tr>
<td>Primary production (C14 light/dark bottles)</td>
<td>Lake</td>
</tr>
<tr>
<td>Phytoplankton (species, density, biomass)</td>
<td>Lake</td>
</tr>
<tr>
<td>Zooplankton (species, density, biomass)</td>
<td>Lake</td>
</tr>
<tr>
<td>Fish (species, abundance, biomass, spatial distribution, age, sex, growth, and food habits)</td>
<td>Lake</td>
</tr>
<tr>
<td>Hydrothermal processes studies</td>
<td>Lake</td>
</tr>
</tbody>
</table>
Extra-Caldera Monitoring and Research

The first observations documenting aquatic resources outside of the Crater Lake caldera were published in 1929 and 1935 in the park’s Crater Lake Nature Notes publication. These articles identified and described, respectively, several mineral springs in the Annie Creek Canyon and six waterfalls that occurred at several locations in the park. Numerous articles in Crater Lake Nature Notes, survey reports, and articles published in peer-reviewed scientific journals have, since the publication of those two early articles, documented the diverse types of aquatic resources present in the park. The first survey of park streams was completed in 1947 (Wallis 1948). This survey, focused primarily on trout distribution, included 41 stations on 19 streams where water temperature, average station width and depth, and velocity were measured and stream habitat was described. A more extensive survey of park streams and springs was conducted in 1967-1968 (Frank and Harris 1969). These surveys recorded 106 flow measurements for 46 streams and 21 springs, and collected 45 water samples from a subsample of 17 streams and 21 springs. Eight samples were analyzed for a complete suite of water quality variables, and 37 samples were analyzed for a subset of variables. In 1981–1985, approximately 10 springs were sampled for water chemistry analysis (Thompson et al. 1987). The Whitehorse Ponds, a complex of 15 ponds located on Whitehorse Bluff, were inventoried and sampled in 1992 and 1993 to document their physical, chemical, and biological characteristics (Salinas et al. 1994). Additional activities have included: (1) incidental observations and projects designed to survey and investigate the distributions and life history characteristics of amphibian species in Crater Lake and at freshwater sites outside of the caldera (e.g., Farner 1947, Farner and Kezer 1953, Kezer and Farner 1955, Bergmann 1997); and (2) a project to eradicate brook trout (Salvelinus fontinalis) from and restore native bull trout (Salvelinus confluentus) in Sun Creek. The bull trout restoration project was initiated in 1992 in response to the precipitous decline within the park of this genetically distinct Pacific Northwest population due to encroachment of introduced nonnative brook trout. Fish surveys of all Klamath River basin tributaries within the park have also been conducted.

Horizon Report

No report is presently available.

Resource Management Water Quality Concern

1) Long-term clarity of Crater Lake and health of the lake ecosystem

See Attachment I for CRLA water quality, fisheries and streams inventory, monitoring, and research study references.
General Summary of Past Activities: Surveys of Lassen Volcanic National Park ponds/lakes, wetlands and streams have focused primarily on documenting baseline ecological condition and developing management and research alternatives for these resources. The status of aquatic invertebrates, native amphibians and nonnative fish in Lassen lentic habitats has also been documented. Hydrothermal/geothermal resources have been continuously monitored since 1981, focusing on water quality characteristics, potential impacts of these resources on visitors, and potential visitor impacts on the resources.

Lassen Peak and Cinder Cone National Monuments were established on March 6, 1907, and combined into Lassen Volcanic National Park (Figure 4) on August 9, 1916. The park is located in the southern most part of the Cascade Mountains in northeastern California, and is part of the Cascade Physiographic Province. The park is 43,047 ha (106,372 ac) in size, and the landscape is dominated by volcanic processes; Lassen Peak is the southernmost volcano in the Cascade Range. The park contains up to 277 permanent and ephemeral lentic water bodies. Portions of five drainage basins are located within the park, and four of the drainage basins (about 99% of the park) drain into the Sacramento River. Many lakes have been historically stocked with nonnative trout for
recreational fishing and now contain self-propagating populations. Mill Creek, which has no dams blocking anadromous fish passage, is one of very few stream courses remaining in the Sacramento River drainage with biological integrity preserved.

There are several aquatic vertebrate and invertebrate taxa within Lassen that are on the federal and/or state lists as protected species. Kings Creek caddisfly (Parapsyche extensa) is a federal species of concern; the Modoc sucker (Catostomus micorps) is listed as endangered on both lists; and the Cascades frog (Rana cascadae) is listed as a federal and state species of concern.

Horizon Report

The retrieval of surface water quality data from six of the US Environmental Protection Agency’s (EPA) national water resources databases included data generated by four agencies (i.e., National Park Service [NPS], US Geological Survey [USGS], EPA, and California Water Resources Control Board [CWRCB]; NPS-WRD 1999a). These data represent water quality analyses for samples collected from 281 sampling stations, of which 218 (NPS = 190, USGS = 14, EPA = 7, CWRCB = 7) were within the boundaries of Lassen. Park sampling stations (NPS-WRD 1999a, pages 51-54) were located at 29 lakes, 21 cold and hot streams, 60 hydrothermal sites, and 2 wetlands. Some sites had multiple sampling stations. A total of 169 water quality parameters (NPS-WRD 1999a, pages 55-57) were examined, although not all parameters were represented at all sampling locations. The period of time represented by these data from Lassen sampling sites was 1960-1994. The Horizon Report is available at: http://nrdata.nps.gov/LAVO/nrdata/water/baseline_wq/docs/LAVOWQAA.pdf.

Lakes, Streams, and Wetlands

The first known survey of lakes in Lassen was documented in a report titled “1955 Lake Survey – Lassen Volcanic National Park” (author unknown). Wallis (1959) conducted a fishery resources survey of 22 lakes in 1958 with the purpose of developing a stocking plan for park lakes; the focus was primarily on the distributions of fish species and past stocking activities. Several lake surveys were conducted during the 1960’s and data from these surveys have been summarized in the Baseline Water Quality Data Inventory and Analysis report described previously (NPS-WRD 1999a). At least 11 lakes were surveyed during this period of time. The objectives of these surveys were to determine the general ecological conditions of the lakes and to develop management and research alternatives for the park’s lentic resources. In 1976, an extensive survey of Lassen lakes was completed (West 1976). A total of 162 lentic systems were surveyed, and of these 131 were sampled. Measurements and assessments included: (1) water temperature; (2) color; (3) clarity; (4) site depth (maximum and mean); (5) site bottom and shore type; (6) watershed condition; (7) site surface area; (8) presence and location of inlets and outlets; (9) fish presence; (10) presence of fish predators; and (11) relative abundance of aquatic invertebrates and vegetation. Additional lake survey activities included the physical and chemical analysis of seven Lassen lakes as part of the EPA’s Western Lake Survey (Landers et al. 1987, Eilers et al. 1987); inventories of aquatic invertebrates (DeMartini,
and amphibian surveys of 378 lentic sites as part of the Amphibian Research and Monitoring Initiative (Fellers et al. 2003). Stead et al. (2005), during the summer of 2004, also investigated the status of native amphibians and nonnative fish in Lassen lentic habitats (i.e., lakes, permanent and temporary ponds, wet meadows, and marsh/bogs; n=365). A new baseline water quality inventory of Lassen aquatic resources will begin in 2005, conducted by personnel of the USGS Western Ecological Research Center in Arcata, California.

Stream (cold and hot) and wetland survey data are available as part of the Baseline Water Quality Data Inventory and Analysis Report (NPS-WRD 1999a). Three reports document stream survey activities from 1963-1979 (Everest 1964, McClelland 1973, Thompson 1983), and three agencies (i.e., NPS, USGS, and CWRCB) have been responsible for collecting stream survey data from 1979-present. Two wetlands (Corral Meadows and Grassy Swale) were surveyed as part of the Lassen Park Summer 1979 Lake Surveys, and research has been conducted on the Drakesbad fen from 2002-2004 (Patterson and Cooper, in prep). Faculty members of the Department of Civil Engineering and Applied Mechanics, San Jose State University, conducted a sanitary survey of five park watersheds supplying water to campgrounds and park communities. The survey was completed in 1996, and provided data concerning types and sources of potential water source contamination to assist Lassen in complying with the USEPA Surface Water Treatment Rule established in 1989 (Williamson et al. 1997).

Hydrothermal/Geothermal Resources

Geothermal/hydrothermal resources in Lassen are situated primarily in the southwestern (e.g., Sulfur Works, Bumpass Hell, Little Hot Springs Valley) and southern (e.g., Devil’s Kitchen, Drakesbad, Terminal Geyser) parts of the park (Thompson 1983). Waring (1915) reported the results of the first thermal water analyses of Lassen hot springs. Ten years later, Day and Allen (1925) reported the results of the chemical analyses of water from 23 Lassen hot springs. Since these early analyses, at least five surveys of hydrothermal resources have been conducted from 1963 to1981 (e.g., Lenn 1965 = 22 hot springs; Ghiorso 1980 = 34 hydrothermal sites; Thompson 1983 = 43 hydrothermal sites). Data from these surveys have been collected in the Baseline Water Quality Data Inventory and Analysis (NPS-WRD 1999a). Since 1981, the monitoring and chemical analyses of Lassen hydrothermal sites have been performed primarily by the USGS. According to USGS Fact Sheet 101-02 (Clyne et al. 2002), NPS personnel and USGS scientists monitor the physical and chemical characteristics of surface hydrothermal activity in the park to: (1) better understand the origin and evolution of the park’s hydrothermal resources; and (2) protect park visitors from any potential hazards associated with visiting these features.

Fisheries Studies

6) Food Habits Analysis of Fish from Mountain Lakes in Lassen Volcanic National Park, California, 1977.
7) Aquatic resources of Lassen volcanic, Sequoia-Kings Canyon, and Yosemite National Parks, with special reference to trout stocking and the recreational fishery, 1978.
10) FY04 Joint inventory of fishes, native amphibians, and invertebrates in all lakes and ponds of the park. Status of the trophy rainbow trout fishery at Manzanita Lake (Lassen Volcanic National Park) based on reports from angler survey boxes in 1994.

Resource Management Water Quality Concern

1) Deterioration of geothermal areas as a result of visitor impacts

See Attachment I for LAVO water quality, fisheries and lake monitoring, and research study references.
General Summary of Past Activities: Aquatic resource inventory, monitoring and research activities at Lava Beds National Monument have included surveys of ice cave baseline water quality, monitoring of ice depth, and monitoring of groundwater depth and availability. Lava Beds is also concerned about the potential effects of adjacent land use practices (e.g., agriculture and geothermal exploration and development) on park unit aquatic resources.

Lava Beds National Monument (Figure 5) was established by Presidential Proclamation on November 21, 1925 to preserve for public enjoyment the area's dramatic volcanic geology (e.g., lava tubes, cinder cones, spatter cones, lava flows and other volcanic phenomena). Lava Beds was originally placed under the jurisdiction of the Department of Agriculture, U.S. Forest Service, and was transferred to the Department of the Interior on June 10, 1933.

The 18,842 ha (46,560 ac) monument is located on the east-side of the Southern Cascade Mountains on the Modoc Plateau in northeastern California. The plateau is a volcanic platform generally ranging in elevation between 1219–1829 m (4,000-6,000 ft). Lava Beds lies on the northern flank of Medicine Lake Volcano. The volcano is a Pleistocene
to Holocene shield volcano located about 48.3 km (30 mi) northeast of Mt. Shasta and the eruptive area of the Medicine Lake Volcano covers over 233 km² (900 mi²). There is evidence of glaciation at the higher elevations of the volcano. LABE contains a range of Great Basin vegetation communities, including ponderosa pine forests, mountain mahogany/juniper, and sagebrush/bunchgrass.

Lava Beds currently has 502 documented lava tube caves with a total of 46.2 km (28.7 mi) of known passageways. Due to the porosity of lava soils, no permanent ponds, lakes, streams or wetlands are found within the monuments boundary. However, 28 caves within the monument are documented to contain ice and water, and seasonal (intermittent-ephemeral) ponds can be formed after heavy precipitation events. Many of the ice caves are important water sources for wildlife and have been historically used by humans (e.g., indigenous groups, ranchers and moonshiners). Fourteen species of bats and a number of bird species utilize the ice caves as sources of water. Two of the bat species include Townsend’s big eared bat (*Corynorhinus townsendii*) which is a species of concern, and the largest northern migratory United States colony of the Mexican free-tail bat (*Tadarida brasiliensis*).

There are no distinct aquifers in the area, so there is uncertainty about the source, quantity and movement of groundwater in Lava Beds. One groundwater well, located at the monument headquarters, provides water for all staff and visitors. The U.S. Geological Survey is monitoring groundwater at five wells, four in the monument and one outside the monument boundary. There appears to be some groundwater drawdown due to agricultural land use near the monument. The National Park Service Water Resources Division also is helping to evaluate the status of groundwater at Lava Beds.

In 1999, a Student Conservation Associate conducted the first water sampling of 14 Lava Beds ice caves. Between 1990 and the present, eight ice cave floors have been monitored for changes in ice depths by the Cave Research Foundation. In 1999, the ice in Merrill Ice Cave, one of the larger ice resources in the monument, began to melt with the formation of a hole in the center of the ice floor (Figure 6). By 2001, the entire ice resource had practically disappeared. It is paramount that an ice/water quality baseline be established before possible future losses occur in other caves.

The Glass Mountain Known Geothermal Resource Area (KGRA) is located adjacent to Lava Beds to the south. The KGRA allows the Bureau of Land Management to conduct competitive lease sales for geothermal exploration. In the past there has been exploratory drilling for geothermal resources in the Medicine Lake area up to the southern boundary of the monument. Although it is unlikely that any wells will be drilled in the monument, outside activity could have an impact on Lava Beds. There could be a drawdown of the groundwater table in addition to the vibration and disturbance caused by the drilling rigs and support activities.
Horizon Report

A Horizon Report (NPS-WRD 1999b) is available for Lava Beds at: http://nrdata.nps.gov/LABE/nrdata/water/baseline wq/docs/LABEWQAA.pdf. Data were collected for 131 water quality parameters (pages 40-41 of the report) from 23 sampling stations (page 39 of the report), 1966 through 1992. The stations were outside of the park unit boundary and associated with Tule Lake. The U.S. Geological Survey and the National Park Service were responsible for the water quality sampling summarized in this report.

Ice and Water Resource Monitoring

1) Ice cave studies
2) Groundwater study
3) Water quality inventory within ice caves (KLMN-FY05, Chris Currens, USGS WERC). Beginning in 2005, water sampling at Lava Beds will occur in 12 of the 28 known ice caves. Sampling will occur in caves identified as primary ice resources for the monument. The selection of caves will also be based on ease of access, technician safety, and cave resource sensitivity
4) Ice levels in eight ice caves have been monitored since 1990 by Cave Research Foundation
5) Ice cave geomorphology
6) Effects of geothermal exploration and development
7) Assess effects of adjacent land use practices on park unit resources (agricultural use, insecticides/pesticides; accumulation within Tule Lake; Tule Lake NWR management/land use)

Resource Management Water Quality Concerns

1) Loss of ice in permanent ice caves and water in seasonal wet caves
2) Lack of data on groundwater supply and possible drawdown effects
3) Lack of basic water quality inventory of intermittent-ephemeral ponds

See Attachment I for LABE water quality inventory, monitoring, and research study references.
General Summary of Past Activities: Oregon Caves National Monument has focused on documenting the baseline water quality of pools, springs and streams in or near the park unit cave system. The physical characteristics and magnitude of potential direct human impacts on park unit aquatic resources also have been inventoried and continue to be monitored.

Oregon Caves National Monument (Figure 7) was established on July 12, 1909, under the U.S. Forest Service, specifically to protect the cave system. It was transferred to the National Park Service on August 10, 1933. In February 1992, a large portion of the developed area in the monument was listed in the National Register of Historic Places. Oregon Caves (194 ha; 480 ac) is located in the Siskiyou/Klamath bioregion of southwestern Oregon. Although Oregon Caves is a small unit, its forest communities are a diverse representation of the larger bioregion. Old growth Douglas fir, white fir and oak forests cover the majority of the monument, providing diverse microhabitats for the monument’s nearly 500 plant species, and an estimated 5,000 animal and 2,000 fungal species; which are among the highest catalogued biota per acre for any national park unit (John Roth, ORCA, personal communication). Federally threatened and endangered species that reside in or utilize the monument include the northern spotted owl, bald...
eagle, and peregrine falcon. Two of the 20 federal and state species of concern in the monument are the Del Norte Salamander (*Plethodon elongates*) and Western Toad (*Bufo boreas*). The amphibian species are, respectively, a species of concern and a sensitive species in the State of Oregon. The cave pools, springs and streams of Oregon Caves are considered important water resources for wildlife.

Horizon Report

A Horizon Report (NPS-WRD 1998) for Oregon caves is available at: (http://nrdata.nps.gov/ORCA/nrdata/water/baseline_wq/docs/ORCAWQAA.pdf). Water quality data catalogued in this report were provided by the Washington Department of Ecology, US Forest Service-Region 6, US Geological Survey, National Park Service, and US Environmental Protection Agency-Region 10. Nineteen sampling stations (page 45 of the report) were located in the park unit; 11 in the cave and 8 outside of the cave. A total of 30 water quality parameters (page 46 of the report) were measured and sampled. The period of sampling was 1966 and 1992-1993.

Cave Inventory

According to Roth (1994), the first comprehensive inventory of any large federally managed cave in the US was completed at Oregon Caves by Earthwatch Institute volunteers prior to 1994. The physical characteristics and magnitude of potential direct human impacts (as indicated by the presence of “cave slime” or *actinomycetes* bacteria) on Oregon Caves were inventoried.

Aquatic Studies

1) ORCA sample collection, 1992-1993, baseline water quality inventory of waters in or near the cave system;
2) Within-cave water quality study of Cave Creek (ongoing by John Salinas, Rogue Valley Community College)
3) Water quality inventory (KLMN-FY05, Chris Currens, USGS WERC)

Resource Management Water Quality Concerns

1) Decline in water quality due to human-caused organic enrichment, calcite solubility index, and turbidity
2) Changes in water volume and timing of cave infiltration
3) Contamination of Cave Creek (the primary water resource at ORCA), cave springs and other surface streams due to drain field pollution and pavement-derived hydrocarbon particulate input
4) Changes in the caves environment (including Cave Creek and various springs located inside the cave) due to manipulation of the primary cave’s environment (i.e., modified cave opening and lighted walkway
5) Visitor use
6) Protection, preservation, restoration and interpretation of cave and karst are of primary importance to the park unit.

See Attachment I for ORCA water quality inventory, monitoring, and research study references.
General Summary of Past Activities: Redwood National and State Parks has monitored steam surface flow and sediment transport and deposition since 1972. The focus of these activities has been the long-term geomorphic and hydrologic monitoring of park unit freshwater lotic systems with emphasis on: (1) impacts due to human-related activities such as logging and road building; (2) water quality issues related to Clean Water Act section 303(d) impaired stream segments (i.e., Redwood Creek and Klamath River); (3) the impact of human-related activities on anadromous salmonids in park unit streams; and (4) the status of native amphibians in park unit lotic habitats. The status and trends of Redwoods marine ecosystems have been minimally examined. However, coastal and intertidal inventories are underway that are designed to assess, in part, human and invasive species impacts, offshore sediment budget, and potential impacts of perturbations such as oil spills to marine ecosystems.

Redwood National Park was established on October 2, 1968. It was designated a World Heritage Site on September 5, 1980, and a Biosphere Reserve on June 30, 1983. Redwood National Park joined three California State Parks (Prairie Creek Redwoods State Park, Del Norte Coast Redwoods State Park, and Jedediah Smith Redwoods State Park) as one cooperative management unit of the National Park Service and California...
Department of Parks and Recreation. In May 1994, Redwood National Park became Redwood National and State Parks (Figure 8), which contains approximately 45% of all remaining old-growth redwood forest in California. The parks are 42,701 ha (105,516 ac) in size arrayed along the Pacific Coast of northern California. The western boundary of Redwoods extends 0.4 km (0.25 mi) beyond the mean high tide line of the Pacific Ocean and the National Park Service has jurisdiction over the waters, intertidal lands, and submerged lands in this area. The coastal jurisdiction of state parklands extends 0.3 km (0.19 mi) west of the ordinary high-water mark of the Pacific Ocean. Elevations within the park range from below sea level to 996 m (3,268 ft).

The aquatic resources of Redwoods consist of over 60 km (36 mi) of marine coastal habitat and 547 km (340 mi) of USGS blue-line (first order) streams. Redwood Creek and its associated watersheds dominate the southern part of the park. The Klamath River is in the northern part of the park and the Klamath River estuary is the only part of the drainage contained within the park boundary. Redwood Creek supports a number of native salmonid species (i.e., cutthroat trout \([Oncorhynchus clarki]\), coho salmon \([Oncorhynchus kisutch]\), steelhead \([Oncorhynchus mykiss]\), and chinook salmon \([Oncorhynchus tshawytscha]\)) that are monitored on an annual basis. Green sturgeon \((Acipenser medirostris)\), Klamath smallscale sucker \((Catostomus rimiculus)\), and the tidewater goby \((Eucyclogobius newberryi)\) are threatened and endangered fish species that also are monitored on an annual basis within the park. The park also supports a number of additional threatened and endangered species (see Appendix E of the KLMN Phase I Report).

The Redwood National Park Act as amended in 1978 gave the Secretary of the Interior the authority to reduce the impacts of upstream sedimentation and to rehabilitate areas that have been subject to timber harvesting in the past. Due to the nature of Franciscan rocks, the steepness of many slopes, the amount of precipitation, and the exposure of soil and bedrock from intensive logging, stream erosion and sedimentation have had and continue to have a profound impact on Redwoods lotic resources. The lower 40% of Redwood Creek is within the park and the upper 60% is on private land that has been logged. As a result of past land use and flood events, Redwood Creek is currently 303(d) listed under the Clean Water Act due to excessive sediment and warm water temperatures.

Long-term geomorphic and hydrologic monitoring continues to be a priority on Redwood Creek and other creeks within Redwoods. Monitoring parameters include stream discharge, sediment transport, turbidity, temperature, channel stability, changes in pool and riffle distribution, pebble count and facies changes in streambed deposits. It may be difficult to determine the exact source of turbidity and sedimentation, but the primary sources appear to be the various impacts of logging roads inside and outside of the park. In cooperation with private landowners, park staff assists in surveying roads on private lands. Park staff also provides input to proposed Timber Harvest Plans in an attempt to minimize erosion. A project funded by the Environmental Protection Agency to evaluate the differences in the duration of turbidity for small streams with different disturbance levels was recently completed.
Road restoration has been a major undertaking at the park. This effort has restored many of the old logging roads and reduced landslide activity in those areas. However, most roads open to visitor traffic are gravel and subject to erosion. Adequate maintenance and upgrading of road drainage structures, culverts and other road features are concerns.

Redwoods coastal resources are largely unexamined and their condition is presently unknown. Redwoods and Humboldt State University are cooperatively conducting an inventory of coastline resources. The goal of the project is to assess the marine resources, including habitat type, vegetation types, and algal, invertebrate, and fish diversity along the park’s 36 miles of accessible coastline.

Horizon Report

No report is presently available.

Fisheries Studies

1) Redwood Creek:
 a. Invertebrate drift and juvenile salmonid habitat of the Redwood Creek watershed: 1981
 b. Downstream migration, growth and condition of juvenile fall chinook salmon in Redwood Creek, Humboldt County, California: 1985
 c. Juvenile salmonid habitat of the Redwood Creek basin, Humboldt County, California: 1988
 d. Fish food habits and their interrelationships in lower Redwood Creek, Humboldt County, California: 1987
 e. Fish food habits in the Redwood Creek estuary: 1990
 f. Redwood Creek basin coho salmon (*Oncorhynchus kisutch*) summary reports: 1994
 g. Redwood Creek basin fisheries summary: 1980-1994
 i. Redwood Creek estuary flood history, sedimentation and implications for aquatic habitat: 1983
 k. Redwood Creek fish and amphibian distribution data [collection]

2) Prairie Creek
 a. Effects of fine sediment on salmonid redds in Prairie Creek, a tributary of Redwood Creek, Humboldt County, California: 1991
 b. Smolt production from Prairie Creek Hatchery juvenile coho reared in an Arcata wastewater-seawater pond: October 1992-May 1993
 c. Prairie Creek salmon restoration: 1992-1993
 d. Anadromous salmonid escapement and downstream migration studies in Prairie Creek, California: 1995-1996
e. Prairie Creek salmon redd composition, escapement and migration studies, Humboldt County, California: 1996-1997
f. Effects of sediments from the Redwood National Park bypass project (CALTRANS) on anadromous salmonids in Prairie Creek State Park: 1995-1998
g. Effects of sedimentation on incubating coho salmon, \((Oncorhynchus kisutch)\) in Prairie Creek, California: 1998
h. Prairie Creek: Survival, growth and movement of juvenile coho salmon \((Oncorhynchus kisutch)\) over-wintering in alcoves, backwaters, and main channel pools: 2001
i. Abundance and survival rates of juvenile coho salmon \((Oncorhynchus kisutch)\) in Prairie Creek: 2002
3) Klamath River
a. Klamath River chinook salmon: use of radio telemetry to study adult upriver migration: 1982
b. Klamath River estuary: utilization by juvenile chinook salmon \((Oncorhynchus tshawytscha)\): 1986
c. Assessment of fish habitat types within the Klamath River estuary: annual performance report: 1992
d. Assessing the effects of moderately elevated fine sediment levels on stream fish assemblages: 2000
5) Fish habitat inventory for lower Lost Man Creek: 1990
6) Habitat utilization by 1987 and 1988 cohorts of chinook salmon from emergence to out-migration in Hurdygurdy Creek, California
7) Mill Creek monitoring program: juvenile salmonid monitoring on the east and west branches of Mill Creek: 1994
8) Smith River adult fish survey: 1997
9) Hoopa Valley Indian Reservation inventory of reservation waters, fish rearing feasibility study and a review of the history and status of anadromous fishery resources of the Klamath River Basin: 1979
10) Effects of large organic debris on channel morphology and process, and anadromous fish habitat in steep, montane coastal redwood environments: 1980
11) Large organic debris and anadromous fish habitat in the coastal redwood environment: the hydrologic system: 1983
Beneficial Water Uses

Table 10 shows the beneficial uses of water in Redwoods as identified by the North Coast Regional Water Quality Control Board (NCRWQCB).

TABLE 10: BENEFICIAL USES OF WATER WITHIN REDWOOD NATIONAL AND STATE PARKS (NCRWQCB)

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGR</td>
<td>Agricultural Supply</td>
</tr>
<tr>
<td>COLD</td>
<td>Cold Freshwater Habitat</td>
</tr>
<tr>
<td>COMM</td>
<td>Commercial and Sport fishing</td>
</tr>
<tr>
<td>EST</td>
<td>Estuarine Habitat</td>
</tr>
<tr>
<td>FRSH</td>
<td>Freshwater Replenishment</td>
</tr>
<tr>
<td>GWR</td>
<td>Groundwater recharge</td>
</tr>
<tr>
<td>IND</td>
<td>Industrial Service Supply</td>
</tr>
<tr>
<td>MAR</td>
<td>Marine Habitat</td>
</tr>
<tr>
<td>MIGR</td>
<td>Fish Migration</td>
</tr>
<tr>
<td>MUN</td>
<td>Municipal Supply</td>
</tr>
<tr>
<td>NAV</td>
<td>Navigation</td>
</tr>
<tr>
<td>PROC</td>
<td>Industrial Process Supply</td>
</tr>
<tr>
<td>RARE</td>
<td>Preservation of Rare and Endangered Species</td>
</tr>
<tr>
<td>REC 1</td>
<td>Contact Water Recreation</td>
</tr>
<tr>
<td>REC2</td>
<td>Non-contact Water Recreation</td>
</tr>
<tr>
<td>SHELL</td>
<td>Shellfish Harvesting</td>
</tr>
<tr>
<td>SPWN</td>
<td>Fish Spawning</td>
</tr>
<tr>
<td>WARM</td>
<td>Warm freshwater habitat</td>
</tr>
<tr>
<td>WILD</td>
<td>Wildlife Habitat</td>
</tr>
</tbody>
</table>

Wildlife Monitoring

1) Redwood Creek estuary salmonid monitoring for adult spawning and juveniles
2) Redwood Creek monitoring for deformed amphibians
3) Marine mammal carcass monitoring (ongoing)
4) Marbled murrelet, snowy plover and brown pelican monitoring

Resource Management Water Quality Concerns

1) Freshwater

A) Effects of adjacent land use, in particular, logging on water quality
B) Water quality issues related to Clean Water Act (CWA) Section 303(d) impaired stream segments (i.e., Redwood Creek sedimentation/siltation and temperature, and Klamath River nutrients and temperature)
C) Water quality of Redwood Creek watershed related to sediment transport trends, water and suspended-sediment discharge, and water chemistry and aquatic biology
D) Impacts of recreational catch and release fishing on threatened salmonid species

Note: a full discussion of the CWA Section 303(d) listing and Total Maximum Daily Load (TMDL) program process can be found at the following EPA web site: http://www.epa.gov/owow/tmdl/

2) Marine

A) Completion of coastal and intertidal inventories including assessments of human impacts, invasive species, offshore sediment budget and potential hazards such as oil spills
B) Compliance of near- and offshore water quality with State Water Quality Control Board standards
C) The impact of river flow output (e.g., Klamath River plume) on coastal habitat, productivity, and water chemistry
D) The potential presence of contaminants in the near- and offshore waters
E) Lack of complete inventories from most marine habitats (Table 11)

TABLE 11: MARINE INVENTORY NEEDS AT REDWOOD NATIONAL AND STATE PARKS

<table>
<thead>
<tr>
<th>Pelagic</th>
<th>Fish</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Marine Mammals</td>
</tr>
<tr>
<td></td>
<td>Marbled Murrelet</td>
</tr>
<tr>
<td></td>
<td>Brown Pelicans</td>
</tr>
<tr>
<td>Subtidal</td>
<td>Habitat Typing (rock, sand, kelp)</td>
</tr>
<tr>
<td></td>
<td>Bathymetry</td>
</tr>
<tr>
<td></td>
<td>Near Shore Currents and Wave Action</td>
</tr>
<tr>
<td></td>
<td>Fish Distribution</td>
</tr>
<tr>
<td>Intertidal</td>
<td>Habitat Typing (rock, sand)</td>
</tr>
<tr>
<td></td>
<td>Invertebrates, Plants, Fish (Distributions and Abundances)</td>
</tr>
<tr>
<td></td>
<td>Large Woody Debris</td>
</tr>
<tr>
<td></td>
<td>Visitor Use</td>
</tr>
<tr>
<td>Estuary</td>
<td>Substrate Typing (rock, sand, mud)</td>
</tr>
<tr>
<td></td>
<td>Aquatic Plants</td>
</tr>
<tr>
<td></td>
<td>Bathymetry</td>
</tr>
</tbody>
</table>

See Attachment I for RNSP watershed monitoring, water quality, and fisheries inventory, monitoring and research study references.
General Summary of Past Activities: Aquatic resource inventory, monitoring and research activities at Whiskeytown National Recreation Area have focused on the water quality of Whiskeytown Lake and its inlet and outlet streams. Water quality sampling has emphasized documentation of potential resource perturbation due to: (1) human recreation activities and waste disposal; (2) point source pollution due to past mining activities and practices; (3) point source pollution due to clandestine-illegal marijuana cultivation; and (4) impacts due to logging and road building. Additional projects have been initiated or completed to: (1) assess the baseline water quality, biology and habitat conditions of the major Whiskeytown watersheds; (2) demonstrate the potential for watershed restoration; (3) determine the status of amphibians and turtles; and (4) survey the status of and potentially restore anadromous salmonids in Clear Creek.

Whiskeytown National Recreation Area (Figure 9) was authorized by Congress on November 8, 1965 (“…to provide…for the public outdoor recreation use and enjoyment of Whiskeytown reservoir and surrounding lands…”) and established on October 21, 1972. Whiskeytown is the only unit of the Whiskeytown-Shasta-Trinity National Recreation Area administered by the National Park Service; the Shasta and Trinity units are administered by the US Forest Service. The Whiskeytown unit (17,198 ha; 42,497 ac)
is located at the northern end of the Sacramento Valley, eight miles west of Redding, California, and Whiskeytown Lake is surrounded by shrubland, oak woodland, and montane forests.

Whiskeytown Lake was created by the Bureau of Reclamation in 1962, when the Clair A. Hill Whiskeytown Dam, blocking Clear Creek, was completed. The reservoir at full capacity contains 29,604 ha-m (240,000 ac-ft) of water and serves as the domestic water supply for the California cities of Redding, Old Shasta, Centerville, Keswick, and Happy Valley. It is also one of several reservoirs that store water for the Central Valley Project. Seven major streams empty directly into the reservoir: Clear, Mill, Brandy, Crystal, Boulder, Willow and Whiskey Creeks. Intermittent streams abound throughout the park unit, and many springs are found at higher elevations.

Whiskeytown has approximately 850,000 visitors annually, with the majority of visitation concentrated in and around the reservoir. Sailing, skiing, fishing, swimming, and kayaking are popular recreational activities. There are two permanent marinas, one additional boat launch site, three designated campgrounds, two developed day use beaches, and numerous smaller beaches along the reservoir. The reservoir is stocked annually with both native and non-native fishes by the California Department of Fish and Game.

Horizon Report

Surface water quality data for Whiskeytown were collected by eight agencies (i.e., California Department of Fish and Game, California Department of Health Services, California Department of Water Resources, California Water Resources Control Board, National Park Service [WHIS and Water Resources Division], UC Davis, USDI Bureau of Reclamation, and US Geological Survey), between 1962-1998 (NPS-WRD, 2000). Numerous sites throughout the reservoir (Whiskeytown Lake), as well as 12 streams, 4 springs, and 2 mines (NPS-WRD 2000, pages 45-47) were sampled during this time period. A total of 128 stations were sampled and all but 17 stations were either sampled once or intensively for a single-year (NPS-WRD 2000). The 17 relatively long-term stations were located at numerous sites around the reservoir, or on Clear and Willow Creeks. Many of the 203 parameters assessed between 1962-1998 (NPS-WRD 2000, pages 48-51) were potential indicators of water quality problems associated with (1) human recreational activities and waste disposal, and (2) point source pollution due to past mining activities and clandestine-illegal marijuana cultivation. These water quality parameters continue to be monitored (1999-present). A Horizon Report for WHIS is available at: (http://nrdata.nps.gov/WHIS/nrdata/water/baseline_wq/docs/WHISWQAA.pdf).

Additional Activities

Water quality related activities at Whiskeytown also include four recent projects not covered by the NPS-WRD (2000) Report. In 1996, Whiskeytown began a cooperative watershed restoration partnership with Shasta College and Salix Applied Earthcare, a
natural resource consulting firm, both located in Redding, California. The cooperative project was titled “Watershed Restoration and Logging Road Removal Project in the Paige Bar Demonstration Watershed” and was designed, in part, to demonstrate the capacity for restoring watershed water quality and fish habitat. The project received the National Park Foundation Environmental Conservation Award in 1999. USGS Project CA598 was designed to identify and characterize contaminant “hot spots” in Whiskeytown due to past mining activities, and to examine the potential adverse effects of mercury and other heavy metals on aquatic biota. This project, begun in April, 2002, examined 15 sites throughout Whiskeytown and concluded in September, 2004 (Hothem et al. 2002-2004). In February, 2004, USGS Project 9VL22 was initiated to assess the aquatic biology, habitat, and water quality conditions of the major Whiskeytown watersheds (May and Brown 2004-2006). This project will conclude in September, 2006. In 2002, USGS personnel surveyed and inventoried the presence of amphibians and turtles in 12 Whiskeytown streams and one pond. Amphibians and turtles were again surveyed and inventoried in 2004, in nine Whiskeytown streams and one pond, and in five arms of the reservoir. Fisheries activities in Clear Creek at Whiskeytown have been associated with a larger effort concerning the restoration of anadromous fish in the Sacramento River drainage area (NMFS 1997, USFWS 2001, CDFG 2002).

Resource Management Water Quality Concerns

1) ArcGIS feature datasets of aquatic resources within the park unit boundary have yet to be completed
2) Disturbance and contamination of stream habitats due to clandestine-illegal marijuana cultivation
3) Introduction of nonnative fish and wildlife (particularly bullfrogs) species
4) Spread of exotic plant species within Whiskeytown Lake

See Attachment I for WHIS water quality and fisheries inventory, monitoring and research study references.
Section 4: Water Quality Monitoring and Research Programs of Allied Agencies Relevant to Klamath Network Park Units

This section describes past and ongoing research or monitoring programs in the Klamath Network region. Many of these programs could provide funding, protocols, or partnership opportunities for the Klamath Network as it develops its water quality monitoring program.

A. US Environmental Protection Agency (USEPA), Environmental Monitoring and Assessment Program (EMAP) - Surface Waters - Western Pilot Study, USEPA (with collaborators). Project Dates: 2000–2005: The Western Pilot study is the Surface Waters component of the USEPA Western Geographic Study through the EMAP Program. The program goal is to answer questions about the importance of stressors and the extent of their effects on ecological condition of wadeable streams; the objective is to develop monitoring tools to estimate the ecological condition of surface waters across the Western US. Project methodology includes sampling of water chemistry, stream discharge, periphyton, sediment, benthic macroinvertebrates, fish, and physical habitat characteristics. Contact: David Peck, USEPA, Corvallis, OR. Phone: 541-754-4426, E-mail: peck.david@epa.gov.

B. US Environmental Protection Agency (USEPA), Environmental Monitoring and Assessment Program (EMAP) – National Coastal Assessment, USEPA (with collaborators). Project Dates: 1990–2003: The USEPA National Coastal Assessment has conducted estuarine monitoring in all 23 coastal States and Puerto Rico (accounting for 99.8% of estuarine acreage in the continental US and Puerto Rico). Data from several regional and national programs conducted by NOAA, USGS and the USFWS are included in the assessment of coastal condition. The West Coast of the US was assessed in 1999 and 2000, and the assessment was extended in 2003 to cover the continental shelf. Marine biota (plankton, benthos, and fish) and environmental parameters associated with water quality, sediment quality, and tissue bioaccumulation were sampled. The first and second Coastal Assessment Reports can be accessed using the following website link: http://www.epa.gov/owow/oceans/nccr2/index.html. Contact: J. Kevin Summers, US EPA. Phone: 850-934-9201, summers.kevin@epamail.epa.gov.

C. National Oceanic and Atmospheric Administration (NOAA), with the Western Regional Climate Center (Desert Research Institute). Climate Reference Network. Project Dates: implemented in 2004: The Climate Reference Network is a network of climate stations being established, with the help of the Western Regional Climate Center, as part of a NOAA initiative. The goal of this project is to monitor long-term precipitation and temperature observations to investigate present and future climate change. If fully implemented, the network will have about 250 sampling stations nationwide. Many of these stations are being established in national parks. Contact: John Jensen, Program Manager, NOAA. Phone: 828-271-4475, E-mail: John.A.Jensen@noaa.gov.
D. US Geological Survey (USGS), Amphibian Research and Monitoring Initiative (ARMI), with NPS, FWS, BLM. Project Dates: 2000–ongoing: In response to growing awareness of amphibian declines and malformations, the USGS ARMI program was initiated by the United States Congress in 2000 to monitor trends in amphibian populations on Department of Interior (DOI) lands; and to research the cause of amphibian declines. While intensive monitoring will be focused on DOI lands, ARMI will also provide a framework for other agencies outside of DOI lands for incorporating amphibian monitoring data. Partnerships with other DOI agencies include a nationwide Fish and Wildlife Service survey for contaminants that may induce malformations in amphibians on 48 National Wildlife Refuges in 31 states. Contact: Mike Adams, Wildlife Biologist, USGS Forest and Rangeland Ecosystem Science Center (FRESC) Corvallis, OR. Phone: 541-758-8857, E-mail: Michael_adams@usgs.gov.

E. US Geological Survey (USGS), National Water Quality Assessment Program (NAWQA) – Sacramento River Basin Study. Project Dates: 1994–1998: The Sacramento River water quality assessment, covering the river’s nearly 75,000 sq km (27,000 sq mi) drainage basin, is the largest within the State of California. The study was divided into 5 physiographic provinces: the Sacramento Valley, the Sierra Nevada, the Coast Ranges, the Cascade Range and the Modoc Plateau. The major use of Sacramento River water is for agriculture (58%), environmental management (32%), urban land use (6%), and other (4%). A suite of water quality parameters were measured including temperature, pH, dissolved oxygen, specific conductance, major cations and anions, metals, suspended sediment, bed sediment, discharge, and fish tissue samples for contaminants. The major issues within the basin are elevated concentrations of trace metals, especially from abandoned mines (WHIS); pesticide contamination of surface water and potential contamination of ground water (LABE, LAVO, WHIS); nitrate contamination of ground water (LABE, LAVO, WHIS); and urban runoff and volatile-organic-chemical contamination. Contact: Joseph Domagalski, USGS, Sacramento, CA. Phone: 916-278-3077, E-mail: joed@usgs.gov.

F. US Geological Survey (USGS), National Stream-gaging Program (NSP), with Federal, State, and Local agencies. Project Dates: variable and ongoing: The USGS has been collecting streamflow information since 1887. The NSP, which partners with many agencies, monitors flows on major and minor streams at nearly 7,000 stations throughout the US. Streamflow gaging stations provide data that can be used for planning and operating water resources projects, flood warning and control operations, and long-term background information about changes in streamflow in response to climate and changes in land use. Contact: Mike Norris, USGS, Phone: 703-648-5304, E-mail: mnorris@usgs.gov.

G. US Geological Survey (USGS), Forest and Rangeland Ecosystem Science Center (FRESC), Project: Development of monitoring protocols for mountain lakes and ponds at North Cascades National Park Service Complex: This project began in 2001 with the purpose of developing a sampling protocol for mountain ponds and lakes. The NPS North Coast and Cascades Network is the project partner and this
protocol has been developed for all park units in this network. The protocol also has been written as a document that can be used by any agency, institution or group (e.g., KLMN) interested in sampling montane lentic ecosystems. The protocol is in press and will be published as stand-alone chapter of a USGS Techniques and Methods document (Techniques and Methods 2-A2). Contact: Robert Hoffman, USGS FRESC (Phone: 541-750-1013, E-mail: robert_hoffman@usgs.gov) and Gary Larson, USGS FRESC (Phone: 541-750-1032, E-mail: gary_l_larson@usgs.gov).

H. US Forest Service (USFS) and Bureau of Land Management (BLM) Watershed Analyses. Approximately 1995–present: Watershed analyses have been conducted by the USFS National Forests and BLM Districts throughout the KLMN region. These analyses are part of the process of implementing ecosystem management as directed by the Northwest Forest Plan. USFS National Forests include: Fremont-Winema, Klamath, Rogue River-Siskiyou, Shasta-Trinity, and Six Rivers; BLM Districts include: Coos Bay, Lakeview, and Medford. Over 76 watersheds have been analyzed since 1995. Each watershed analysis includes the characterization of current and reference conditions in 14 basic categories: (1) human uses; (2) roads; (3) climate; (4) erosion processes; (5) soil productivity; (6) vegetation density and vigor; (7) plant species and habitats; (8) fire; (9) terrestrial wildlife species and habitats; (10) hydrology; (11) stream channel; (12) water quality; (13) riparian areas; and (14) aquatic wildlife species and habitats. Many of the watershed analyses reports are available at each USFS National Forest and BLM District internet web site.

I. Northwestern California/Klamath Bioregion Environment Information Sources: This is an internet website hosted by the Humboldt State University Library at http://library.humboldt.edu/~rls/NorCalEnv.htm#water. The site provides clickable links to environmental data made available by various entities throughout the Klamath Region. Water resources/water quality site links include: (1) California Data Exchange Center; (2) California Nevada River Forecast Center; (3) EPA – Established TMDLs; (4) Hydro-Climatic Data Network; (6) Klamath Resource Information System (KRIS) Web Bibliography; (7) National Water Information System (NWISWeb) Data for California (USGS); (8) Regional Assessment of Stream Temperatures Across Northern California and Their Relationship to Various Landscape-Level and Site-Specific Attributes; (9) Surf Your Watershed; (10) Water Data Library (California Department of Water Resources); and (11) Water Resources Data: California (USGS).

J. California Department of Fish and Game Stream Bioassessment Procedure: The mission of the California Department of Fish and Game’s Aquatic Bioassessment Laboratory is to use biology in the management and assessment of California water quality. This procedure utilizes aquatic invertebrates for the rapid bioassessment of stream water quality. Background information and the bioassessment procedure are available at http://www.dfg.ca.gov/cabw/cabwhome.html.
K. California North Coast Watershed Assessment Program: The development of this interagency program was initiated in 1999 by the California Resources Agency and the California Environmental Protection Agency. The California agencies participating in this program are (1) Department of Fish and Game, (2) Department of Forestry and Fire Protection, (3) Division of Mines and Geology, (4) Department of Water Resources, and (5) North Coast Water Quality Control Board. The program purpose is “to develop consistent, scientifically credible information to guide landowners, agencies, watershed groups, and other stakeholders in their efforts to improve watershed and fisheries conditions.” Detailed information about this program is available at http://www.ncwatershed.ca.gov.
SECTION 5: NETWORK-WIDE SCOPING, IDENTIFICATION, AND PRIORITIZATION OF VITAL SIGNS FOR AQUATIC RESOURCE MONITORING

A. PURPOSE, NEED, AND APPROACH

The Klamath Network is in the process of developing a long-term water quality monitoring plan for its park units. Development of the water quality monitoring plan follows the guidance given in a May 2002 Memorandum to National Park Service Regional I&M Coordinators. The memo outlines the three-phase approach for developing a monitoring plan. Phase 1 of the network’s water resources and water quality assessment provides introductory and background resource and quality information for each park unit in the network. Phase 2 provides a more in-depth review of the aquatic resources and past water quality inventory, monitoring, and research activities in each park unit; and discusses the process of identifying and prioritizing specific “vital signs indicators” (i.e., indicators of ecosystem health) to be monitored as part of a long-term water quality monitoring program. Phase 3 details the steps required to implement an integrated long-term monitoring program including development of: (1) monitoring objectives for each priority vital sign; (2) sampling protocols and sampling designs; and (3) a plan for data management, analysis and reporting.

Water quality was identified during the Klamath Network’s general ecosystems vital signs scoping process as an important element of the overall health of the network’s diverse ecosystems. The network also identified the need for a working water quality subgroup of the Science Advisory Committee (SAC). The subgroup was given the task of making recommendations concerning water quality issues and implementing tasks that the committee considered significant. Their first assignment was to recommend additional Phase I basic water quality inventories for three network park units (LAVO, LABE, and ORCA) based upon a preliminary evaluation of existing water quality information and its currency by the National Park Service Water Resources Division. The second task for the subgroup was to develop and write a Phase I Water Quality Report. The network decided, based upon existing network expertise and available time, to produce the Phase I Report in-house, with technical assistance from the park units. The network did not identify the need to hold a separate water quality scoping and/or vital signs meeting to gather park-specific water quality information. Rather, the identification of general water quality vital signs was incorporated as one of the tasks of the Aquatic Group participating in the network’s third Vital Signs Workshop held May 4-6, 2004. The purpose of this workshop was to identify Level 1 and Level 2 Categories of the National Vital Signs Framework and to provide examples of vital signs and their measurement associated with these categories (see Table 12). A meeting focusing on identifying more specific water quality vital signs for each network park unit was completed on December 1, 2004.

B. VITAL SIGNS SCOPING

The Klamath Network began its vital signs monitoring scoping process in 1998. A detailed account of the process and key findings were reported in Sarr et al. (2004).
Initial park-specific Vital Signs Workshops were held between 1998 and 2003 to begin to identify stressors that potentially impact park unit ecosystems. These workshops were followed in 2004 by three network-wide workshops: (1) Marine (January 27-28); (2) Geology/Soils (March 1-4); and (3) Level 1 and 2 Categories of the National Vital Signs Framework (May 4-6). The purpose of these workshops was to identify general monitoring questions and broad-scale vital signs associated with specific ecosystems and categories (see Sarr et al. 2004, Appendix G, pages 4-17 including Table 1, pages 16-17, for a complete list of National Vital Signs Framework Categories). Detailed results of the May 4-6 workshop specific to Klamath Network park units can be reviewed in Sarr et al. 2004, Appendix G, Tables 2-7, pages 18-46.

General Water Quality Vital Signs Identified during the May 2004 Scoping Process

The dominant theme during the initial identification of network-wide general water quality vital signs was aquatic ecosystem health. The ability to (1) document improvement (or lack thereof) in the water quality of Clean Water Act section 303(d) listed streams, and (2) the ability of park unit managers to document progress toward achieving GPRA goal 1.a4 (i.e., that park units have unimpaired water quality) underscored the importance of identifying a suite of vital signs useful for effective water quality assessment. The need to fully inventory aquatic resources and document baseline and reference water quality conditions also were identified as important objectives in the development of a vital signs-based long-term water quality monitoring program. The vital signs initially identified included:

- **Watershed budgets:** A watershed budget is one method for monitoring water quality. It is an accounting of the inputs and outputs of water, nutrients, sediments, and chemicals passing through a particular watershed; and budgets vary considerably among watersheds. Typical monitored parameters include the concentration of major ions and isotopes, stream flow, groundwater hydrology, and continuous water temperature.

- **Continuous water temperature measurement:** Water temperature can be a useful indicator of the status and trends of aquatic ecosystems. Change in water temperature can be indicative of ecosystem impact due to climate change or other anthropogenic-derived perturbations. However, the intermittent monitoring of temperature can be problematic due to the significant temporal variation of temperature. Use of continuous recording devices is a preferred means of eliminating time-associated sampling variation.

- **Groundwater quantity and quality:** This vital sign refers to the monitoring of groundwater level and chemistry (including contamination). Monitored parameters include groundwater level and volume, pH, temperature, conductivity, trace organic compounds and metals. Samples for analysis are obtained through purging and sampling groundwater wells.

- **Reservoir elevation.** Lakes that are hydrologically managed (i.e., water impounded by a dam) will have fluctuating water levels that can potentially affect lake food webs and ecosystem function. Therefore, changes in water surface...
elevation and storage capacity, as well as water inflow and discharge should be part of the long-term monitoring of reservoirs.

- **River invertebrate assemblages.** The composition of an invertebrate assemblage can be a useful indicator of water quality; and may change in response to the presence of exotic species, as well as changes in sedimentation rate, nutrient loading, composition of predator population, and climate. Two methods can be used to identify and document change: (1) comparing the species of a measured assemblage structure with species that may be indicative of a particular water quality condition (e.g., Stribling *et al.* 1998), and (2) using multivariate analysis to compare a predicted invertebrate assemblage structure to a measured structure (e.g., Hawkins *et al.* 2001, Lewis *et al.* 2001).

- **Hydrology of springs and seeps (cold and hot):** This vital sign includes documenting the location, volume, duration, and seasonality of flow of springs and seeps. Parameters are quantified by calculating physical/geometric metrics (i.e., water depth [maximum, minimum, average]; site length, and width) and discharge (flow quantity, duration, and peak) at each spring or seep.

- **Stream flow/discharge:** Stream flow is the measure of the flow of water in a stream at a specific time relative to (1) watershed routing mechanisms and water quality, (2) watershed land-use activities, and (3) natural and point-source discharges within the watershed. Stream discharge (Q) is defined as the unit volume of water passing a given point on a stream or river over a given time. It is typically expressed in cubic feet per second (cfs) or cubic meters per second (cms) and is based on the equation: \(Q = A \times V \), where \(A \) is the cross-sectional area of the stream at the measurement point and \(V \) is the average velocity of water at that point.

- **Water chemistry:** Information from monitoring water chemistry is used to evaluate water quality with respect to stressors such as atmospheric deposition, nutrient enrichment, and inorganic contaminants. The following parameters and ions are usually monitored: alkalinity, ammonia, bicarbonate, carbonate, calcium, chloride, fluoride, trace metals, nitrate, pH, potassium, silica, sodium, sulfate, total dissolved solids, total suspended solids, total nitrogen, and total phosphorous. In streams, concurrent discharge measurements allow data to be presented as mass flow (e.g., g/hr).

- **Algal species composition and biomass:** Algal species composition refers to the kinds of species present in a body of water. Algal biomass refers to the combined mass of the species. Certain species can indicate changes in water column nutrient input or water temperature. Algal composition is measured by examining algal assemblages, whereas algal biomass can be measured using chlorophyll \(a \) concentrations or Secchi disk water clarity measurements.

- **Escherichia coli (E. coli):** The presence of *E. coli* in a water sample is an indicator of fecal contamination. This bacterium can cause gastrointestinal distress and illness in humans and can be contracted by drinking contaminated water or by swimmers recreating in contaminated swimming areas. Determination of *E. coli* contamination is based on the density of the indicator organism in a
water sample. The EPA requires that the concentration of *E. coli* in a water sample be no more than a geometric mean of 126 *E. coli* per 100 ml of fresh water, or 260 *E. coli* per 100 ml for any single sample.

- **Exotic aquatic species community structure and composition:** Introduced exotic aquatic species can affect the ecosystem dynamics of a water body and negatively impact naturally occurring native biota in affected systems. Monitoring the distribution (geographical location), abundance (number at each sampling location), and spread of exotic species can help managers understand the potential environmental consequences of these organisms. Introduced exotic species of concern include fish (e.g., kokanee [*Oncorhynchus nerka*] in Crater Lake and brook trout [*Salvelinus fontinalis*] in western montane lakes and streams), as well as invertebrates (e.g., the New Zealand mud snail [*Potamopyrgus antipodarum*]).

- **Native aquatic species community structure, composition, stability and genetic integrity:** This vital sign is associated with the overall health of native biota in water bodies of interest. Monitored parameters include the determination of the condition of native biotic communities based on metrics of species richness, composition, and trophic status, relative abundance, presence/absence, and genetics.

- **Atmospheric deposition (wet and dry) of nitrogen, sulfur, and all major anions and cations:** Atmospheric deposition is the process whereby air-borne particles, aerosols, and gases move from the atmosphere to the earth's surface. This vital sign is quantified by measuring snow-pack chemistry and direct measurements of wet (NADP/NTN) and dry (CASTNet) deposition. Fire (e.g., wildfire or controlled burns) also is a source of atmospheric deposition of pollutants, and can reduce visibility in KLMN park units.

- **Basic climatological measurements:** Monitoring parameters associated with this vital sign will help park unit managers identify potential climate change. Basic climatological measurements include: temperature (maximum, minimum, and average), precipitation, relative humidity, wind velocity and pattern, surface pressure, as well as snow cover, depth and water equivalent. The following are recommended standard metrics for these climatological variables: air temperature (°C), surface wind (m/s), and atmospheric humidity/water vapor (as percent, mixing ratio in g H₂O/kg-air, or concentration in g H₂O/m³), surface pressure (hectopascals [hPa] or millibars [mb]), snow cover and depth (water equivalent per km² and/or percent of area for cover and mm/cm for depth).

- **Stream sediment transport.** Sediment data, both suspended and bedload, are required for the evaluation of stream sediment yield with respect to (1) background environmental conditions (geology, soils, climate, runoff, topography, ground cover, and size of drainage area), (2) historic and current land use, and (3) erosion and deposition in channel systems. Additionally, understanding the temporal distribution of sediment concentration, size characteristics, and transport rates is crucial to the management of in-stream aquatic communities and riparian ecosystems. Standardized sediment sampling methods and the frequency of collection will be dictated by the hydrologic and
sediment characteristics of the water body to be sampled, the required accuracy of
the data, the funds available, and the proposed use of the collected data.

Also during the May 2004 vital signs scoping meeting, the Level 1 category, water, was
divided into three Level 2 subcategories (i.e., hydrology, subterranean, and water
quality). General conceptual models of freshwater and marine ecosystems (e.g.,
Attachment III, pages 146-154) were used by participants to help organize and frame the
discussions of ecosystem processes, dynamics, and linkages. Out of these discussions,
general, broad-scale monitoring questions were developed and associated vital signs were
identified for each Level 2 subcategory. The outcome of this process is presented in
Table 12. Full details of the results of the May 2004 meeting are available in Appendix G
of Sarr et al. (2004). These general monitoring questions and vital signs were assessed
and refined (i.e., narrowed) during subsequent scoping meetings (see pages 55-85 and
Tables 14-24).
Table 12: Broad-scale monitoring questions and potential vital signs for water, a National Framework Level 1 Category (SAC = Science Advisory Committee), NPS Klamath Network Vital Signs Scoping Workshop, May 4-6, 2004

<table>
<thead>
<tr>
<th>Subcategories (Level 2)</th>
<th>Monitoring Question</th>
<th>Vital Sign (Klamath)</th>
<th>Question Identified by</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydrology</td>
<td>What is the effusion rate of groundwater into the surface environment? (geothermal)?</td>
<td>Groundwater dynamics (discharge)</td>
<td>Process</td>
<td></td>
</tr>
<tr>
<td></td>
<td>What types of groundwater changes are occurring in network park units?</td>
<td>Aquifers (depth volume variability)</td>
<td>Aquatic</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hyperheic zones</td>
<td>Aquatic</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>What is happening with the hydrological cycle?</td>
<td>Terrestrial</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>What are trends in soil moisture across vegetation habitats?</td>
<td>Evapotranspiration</td>
<td>Terrestrial</td>
<td></td>
</tr>
<tr>
<td></td>
<td>What is the status and what are the trends of hydrothermal output into aquatic system?</td>
<td>Water chemistry</td>
<td>Process</td>
<td></td>
</tr>
<tr>
<td></td>
<td>What impact does seepage have on groundwater quality?</td>
<td>Groundwater (discharge and composition)</td>
<td>SAC</td>
<td></td>
</tr>
<tr>
<td></td>
<td>What is the status and what are the trends of water flow (water supply) in network park units?</td>
<td>Water flow</td>
<td>SAC</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Water supply</td>
<td>Process, Aquatic</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subterranean</td>
<td>How are changes in water and ice quantity, rates, and quality affecting erosion, deposition, and biota?</td>
<td>Water Flow (quantity)</td>
<td>Cave, Aquatic</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Distribution (Water/Ice Budget)</td>
<td>Cave, Aquatic</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Crustaceans and worms</td>
<td>Cave, Aquatic</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subcategories (Level 2)</td>
<td>Monitoring Question</td>
<td>Vital Sign (Klamath)</td>
<td>Question Identified by</td>
<td>Comments</td>
</tr>
<tr>
<td>------------------------</td>
<td>---------------------</td>
<td>---------------------</td>
<td>------------------------</td>
<td>----------</td>
</tr>
<tr>
<td>Water Quality</td>
<td>What is the status and what are the trends of point source pollution inputs?</td>
<td>Pollutants (inorganic)</td>
<td>Process, Marine</td>
<td>Cave, Aquatic Microorganisms Cave</td>
</tr>
<tr>
<td></td>
<td>What is the status and what are the trends of non-point source pollution inputs?</td>
<td>Pollutants (organic)</td>
<td>Marine</td>
<td>Cave, Aquatic Microorganisms Cave</td>
</tr>
<tr>
<td></td>
<td>Water chemistry</td>
<td></td>
<td>Process, Aquatic</td>
<td>Cave, Aquatic Microorganisms Cave</td>
</tr>
<tr>
<td></td>
<td>Nutrient levels</td>
<td></td>
<td>Whiskeytown</td>
<td>Cave, Aquatic Microorganisms Cave</td>
</tr>
<tr>
<td></td>
<td>What is the status and what are the trends of watercraft emissions?</td>
<td>Hydrocarbon deposition</td>
<td>SAC</td>
<td>Cave, Aquatic Microorganisms Cave</td>
</tr>
<tr>
<td></td>
<td>What is the status and what are the trends of aquatic biological communities?</td>
<td>Aquatic organisms</td>
<td>Aquatic</td>
<td>Cave, Aquatic Microorganisms Cave</td>
</tr>
<tr>
<td></td>
<td>When and how much water is occurring in ephemeral systems and can we detect a change over time?</td>
<td>Water (physical)</td>
<td>Aquatic</td>
<td>Cave, Aquatic Microorganisms Cave</td>
</tr>
<tr>
<td></td>
<td>Vernal pools</td>
<td></td>
<td>Terrestrial</td>
<td>Cave, Aquatic Microorganisms Cave</td>
</tr>
<tr>
<td></td>
<td>Ephemeral streams</td>
<td></td>
<td>SAC</td>
<td>Cave, Aquatic Microorganisms Cave</td>
</tr>
<tr>
<td></td>
<td>Littoral ponds (Crater Lake)</td>
<td></td>
<td>SAC</td>
<td>Cave, Aquatic Microorganisms Cave</td>
</tr>
<tr>
<td></td>
<td>Seasonal wet meadows (LAVO))</td>
<td></td>
<td>SAC</td>
<td>Cave, Aquatic Microorganisms Cave</td>
</tr>
<tr>
<td></td>
<td>Snow melt beds</td>
<td></td>
<td>SAC</td>
<td>Cave, Aquatic Microorganisms Cave</td>
</tr>
<tr>
<td></td>
<td>Are the sizes and distributions of perennial water bodies (streams, lakes, snow fields, springs, wetlands) changing over time?</td>
<td>Distribution of water bodies</td>
<td>Aquatic</td>
<td>Cave, Aquatic Microorganisms Cave</td>
</tr>
<tr>
<td>Subcategories (Level 2)</td>
<td>Monitoring Question</td>
<td>Vital Sign (Klamath)</td>
<td>Question Identified by</td>
<td>Comments</td>
</tr>
<tr>
<td>------------------------</td>
<td>---------------------</td>
<td>----------------------</td>
<td>------------------------</td>
<td>----------</td>
</tr>
<tr>
<td>Water Quality</td>
<td>What is the extent of material, biological, and chemical pollution in the marine ecosystem?</td>
<td>Marine</td>
<td>Marine</td>
<td>Comments Percent of beached marine seabird carcasses with attached debris.</td>
</tr>
<tr>
<td></td>
<td>What is the status and what are the trends of marine trash (material trash)?</td>
<td>Seabirds</td>
<td>Marine</td>
<td>Comments Percent of beached marine mammal carcasses with attached debris.</td>
</tr>
<tr>
<td></td>
<td>What is the status and what are the trends of marine mammals (?):</td>
<td>Marine mammals</td>
<td>Marine</td>
<td>Comments Percent of beached marine mammal carcasses with attached debris.</td>
</tr>
<tr>
<td></td>
<td>What are the impacts of terrestrial sources of intertidal pollution (?):</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-oil</td>
<td>Oil</td>
<td>Marine</td>
<td>Presence/absence of oiled beach marine seabird carcasses.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Seabirds</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-river discharged pollution</td>
<td>Pollutants</td>
<td>Marine</td>
<td>Similar water quality testing as done by State Water Quality Control Board.</td>
</tr>
<tr>
<td></td>
<td>-salinity</td>
<td>Surface salinity</td>
<td>Marine</td>
<td>Annual and seasonal variations in open ocean and estuary.</td>
</tr>
<tr>
<td>Subcategories (Level 2)</td>
<td>Monitoring Question</td>
<td>Vital Sign (Klamath)</td>
<td>Question Identified by</td>
<td>Comments</td>
</tr>
<tr>
<td>-------------------------</td>
<td>----------------------</td>
<td>----------------------</td>
<td>------------------------</td>
<td>----------</td>
</tr>
<tr>
<td>Water Quality</td>
<td>-turbidity/clarity</td>
<td>Turbidity</td>
<td>Marine, VSA</td>
<td>NTUs, light penetration in estuary, intertidal and subtidal zones, extent of turbid river plumes</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>What is the status and what are the trends of sea surface and subsurface water temperature?</td>
<td>Sea surface and subsurface water temperature</td>
<td>Marine</td>
<td>Annual and seasonal variations of water samples in open ocean</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>What is the status and what are the trends of dissolved oxygen in estuarine ecosystems?</td>
<td>Dissolved oxygen</td>
<td>RNSP, Marine</td>
<td>Annual and seasonal variations of water samples in estuary</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>What are the effects of upstream management on estuaries (dams, flow regulation, water quality)?</td>
<td>Water temperature (estuary)</td>
<td>Marine</td>
<td>Annual and seasonal variations of water samples in estuary</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Chlorophyll a</td>
<td>Marine</td>
<td>Annual and seasonal variations of water samples in estuary</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Coliform bacteria</td>
<td>Marine</td>
<td>Annual and seasonal variations of water samples in estuary</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Herbicides associated with forestry application</td>
<td>Marine</td>
<td>Annual and seasonal variations of water samples in estuary</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>What are the effects of upstream management on estuaries (land use)?</td>
<td>Dissolved oxygen (estuary)</td>
<td>Marine</td>
<td>Annual and seasonal variations in estuary</td>
</tr>
</tbody>
</table>
Priority Water Quality Vital Signs Associated with Monitoring Questions

In October 2004 the Klamath Network began the detailed assessment and refinement (i.e., narrowing) of the general water quality monitoring questions and vital signs identified during the May 2004 workshops. The process was initiated by sending an Aquatic Resources and Water Quality Questionnaire (see Attachment II) to the Chief of Resources Management of each park unit. Park-specific information was sought in five basic categories: (1) identification of aquatic resources within park unit boundaries (i.e., marine, estuarine, lotic, lentic, palustrine, ice caves, and geothermal/hydrothermal); (2) a list of water bodies of particular importance or interest to the park unit management; (3) a list of past and current water quality monitoring efforts; (4) a list of water resource management and/or land use issues that impact resources from either within or outside each park unit; and (5) qualification of the level of knowledge and experience of park unit staff in monitoring water quality. All park units except ORCA were able to complete and return the questionnaire. Answers to the questionnaire categories were summarized into preliminary park-specific Vital Signs Tables that included columns for: (1) Aquatic Resource; (2) Potential Resource Stressors; (3) Potential Indicators of Stress; (4) Potential Monitoring Options; and (5) Stressor Priority. (The Oregon Caves Vital Signs Table was completed at the December 1, 2004 scoping session described below.)

The preliminary Vital Signs Tables were presented to representatives of each park unit at the Klamath Network Inventory and Monitoring Program Board of Directors Meeting (FY05) in Ashland, Oregon, December 1, 2004. A Water Quality Vital Signs Scoping Session was held in the afternoon at which time the Vital Signs Tables were reviewed and refined. Session participants (Table 13) were separated into three working groups: (1) Crater Lake and Lassen; (2) Lava Beds and Redwoods; (3) Oregon caves and Whiskeytown. The objectives of the small groups were, for each park unit, to: (1) identify specific water quality vital signs, ecosystem stressors associated with each vital sign, and associated monitoring options; and (2) prioritize aquatic resource vital signs. Final park-specific Vital Signs Tables were then developed based on feedback from the small groups (Tables 14-20).
TABLE 13: PARTICIPANTS AT THE NPS KLAMATH NETWORK WATER QUALITY VITAL SIGNS SCOPING MEETING, ASHLAND, OREGON, DECEMBER 1, 2004

<table>
<thead>
<tr>
<th>Participant</th>
<th>Affiliation</th>
</tr>
</thead>
<tbody>
<tr>
<td>David Anderson</td>
<td>RNSP</td>
</tr>
<tr>
<td>Jon Arnold</td>
<td>LAVO</td>
</tr>
<tr>
<td>Larry Bancroft</td>
<td>CRLA</td>
</tr>
<tr>
<td>Mac Brock</td>
<td>CRLA</td>
</tr>
<tr>
<td>Mark Buktenica</td>
<td>CRLA</td>
</tr>
<tr>
<td>Chris Currens</td>
<td>USGS WERC</td>
</tr>
<tr>
<td>Paul DePrey</td>
<td>WHIS</td>
</tr>
<tr>
<td>Scott Girdner</td>
<td>CRLA</td>
</tr>
<tr>
<td>David Hays</td>
<td>LABE</td>
</tr>
<tr>
<td>Robert Hoffman</td>
<td>USGS FRESCH</td>
</tr>
<tr>
<td>Terry Hofstra</td>
<td>RNSP</td>
</tr>
<tr>
<td>Louise Johnson</td>
<td>LAVO</td>
</tr>
<tr>
<td>David Larson</td>
<td>LABE</td>
</tr>
<tr>
<td>Mary Ann Madej</td>
<td>USGS WERC</td>
</tr>
<tr>
<td>Tom Marquette</td>
<td>RNSP</td>
</tr>
<tr>
<td>Brian Rasmussen</td>
<td>WHIS</td>
</tr>
<tr>
<td>John Roth</td>
<td>ORCA</td>
</tr>
<tr>
<td>Howard Sakai</td>
<td>RNSP</td>
</tr>
<tr>
<td>Robert Truitt</td>
<td>KLMN</td>
</tr>
</tbody>
</table>

The Vital Signs Tables created during this process include monitoring options useful in detecting potential resource change due to stress of natural or anthropogenic origin. These suggested options are not intended as a complete list of potential monitoring procedures useful for detecting ecosystem change, and the list of options can be amended as necessary during future program assessments. In addition to these options, several field measured parameters will be required as part of any monitoring program. These required parameters include: (1) water temperature; (2) specific conductance (as well as salinity in marine systems); (3) pH; and (4) dissolved oxygen. At flowing sites, some measure of qualitative flow will be required, and an estimate of water body stage or level will be required at non-flowing/still freshwater sites. Additional required parameters at marine sites include tidal stage and estimated wave height. Guidance concerning these required parameters is available in the National Park Service Water Resources Division draft document titled “Vital Signs Long-term Aquatic Monitoring Projects: Part C, Draft Guidance on WRD Required and Other Field Parameter Measurements, General Monitoring Methods and some Design Considerations in Preparation of a Detailed Study Plan (August 2003).” This document is available on the National Park Service Inventory and Monitoring Program website at: http://science.nature.nps.gov/im/monitor/protocols/wqPartC.doc.
C. PARK-LEVEL VITAL SIGNS TABLES

Crater Lake National Park (CRLA)

Crater Lake aquatic resources occur within and outside of the Mt. Mazama caldera. Crater Lake is the focus of most park visitors, and a long-term monitoring program of lake and inner-caldera streams and springs water quality has been active since June, 1983. Geothermal sites deep in Crater Lake are also identified as an important resource within the caldera. Freshwater resources outside of the caldera include: (1) relatively small and shallow ponds, lakes, and wetlands; (2) Sphagnum Bog Research Natural Area; and (3) numerous streams and springs. Vital Signs for Crater Lake, inner-caldera streams and springs, and lentic systems outside of the caldera, in order of priority, are: (1) climate change (e.g., temperature and precipitation regimes); (2) presence and extent of native/introduced (invasive) aquatic biota; (3) atmospheric deposition of nutrients and pollutants; and (4) visitor use impacts - recreation and motorized boat use on Crater Lake. Vital Signs for perennial streams and springs outside of the caldera, in order of priority, are: (1) presence and extent of native/introduced (invasive) aquatic biota; (2) atmospheric deposition of nutrients and pollutants; and (3) land and non-recreational human use impacts – park operations. Cattle trespass is identified as a potential vital sign of Sphagnum Bog RNA. There is also concern that geothermal exploration near the CRLA boundary could negatively impact geothermal sites within the caldera. A detailed summary of Crater Lake aquatic resource vital signs, potential stress indicators, and associated monitoring options is presented in Table 14A-D.

Lassen Volcanic National Park (LAVO)

Aquatic resources in Lassen can be grouped into two categories: (1) ponds and lakes, wetlands, and streams; and (2) geothermal/hydrothermal features such as hot springs and streams, fumaroles, and mudpots. Ponds and lakes, wetlands, and streams are grouped together because the same stressors impact each resource-type. Vital signs of lentic and lotic resources, in order of priority, are: (1) climate change (e.g., temperature and precipitation regimes); (2) atmospheric deposition of nutrients and pollutants; (3) presence and extent of native/introduced (invasive) aquatic biota (esp., non-native trout and char); and (4) Visitor use impacts - recreational (e.g., hiking, backpacking and camping) and non-recreational (park operations, e.g., parking lot and road maintenance, and various construction projects). Visitor use impacts - recreational is identified as the major vital sign of geothermal/ hydrothermal resources in Lassen. Geothermal/hydrothermal resources have been and continue to be monitored as part of the USGS Volcano Monitoring Program. A detailed summary of Lassen aquatic resource vital signs, potential stress indicators, and associated monitoring options is presented in Table 15A-B.

Lava Beds National Monument (LABE)

No permanent surface freshwater resources exist within the boundaries of Lava Beds; however, a few intermittent-ephemeral ponds occur. Aquatic resources in Lava Beds
occur primarily as ice and water in permanent ice caves and seasonal wet caves, and groundwater. Stressors of these resources include reduced precipitation associated with increased air temperatures and evaporation, and decreased relative humidity in caves. These changes could subsequently decrease the amount of ice in caves and the availability of water for Lava Beds biota. Since water is a precious commodity in Lava Beds, any change in water availability due either to stress of natural or anthropogenic origin could be quite detrimental to Lava Beds ecosystems. Stressors of anthropogenic origin include impacts due to climate change, geothermal exploration, agricultural land use (esp., irrigation and use of chemicals), and timber harvest just outside of the Lava Beds boundary. The priority vital signs for Lava Beds aquatic resources are: (1) climate change (e.g., temperature and precipitation regimes); (2) groundwater; (3) agricultural chemicals in cave ice and water; and (4) extent of impact on water quality of activities associated with park unit development, visitor use, and water runoff from roads. A detailed summary of Lava Beds aquatic resource vital signs, potential stress indicators, and associated monitoring options is presented in Table 16A-D.

Oregon Caves National Monument (ORCA)

The aquatic resources of Oregon Caves consist of an in-cave stream and springs, and surface streams. Stressors to in-cave resources include: (1) impacts due to climate change; (2) human actions that modify the cave environment, especially modification of cave openings; (3) visitor use impairments due to the introduction of inorganic and organic contaminants; (4) manipulation of the cave environment through the introduction of artificial light; (5) subsequent increase in algal growth in the cave and the introduction of contaminants (e.g., bleach) during cave algae control efforts; and (6) decrease in the amount and availability of in-cave water due to withdrawal of water from surface streams for fire suppression. Surface streams are susceptible to the effects of climate change, catastrophic fire, and debris flows. Cave Creek, a primary stream flowing through Oregon Caves, is also particularly susceptible to contamination by drain field leaching. The presence of grazing cattle near Oregon Caves’ streams may also contribute to the potential contamination of the Oregon Caves water supply. The priority vital signs of Oregon Caves’ aquatic resources are: (1) drain field contamination of Cave Creek; (2) cave environment relative to the modified cave opening; (3) visitor usage; and (4) cave environment relative to introduction of artificial light. A detailed summary of Oregon Caves’ aquatic resource vital signs, potential stress indicators, and associated monitoring options is presented in Table 17A-B.

Redwood National and State Parks (RNSP)

Freshwater and marine aquatic resources are present in Redwoods. Freshwater resources include impaired streams (i.e., Redwood Creek and Klamath River), numerous unimpaired streams (e.g., Godwood Creek, Hayes Creek, Little Lost Man Creek, Mill Creek, Upper Prairie Creek, and Smith River), and small ponds and wetlands. Marine resources include the intertidal and offshore coastal zones, the estuaries of Redwood Creek and Klamath River, several lagoons (i.e., Esapa, Lagoon Creek, and Freshwater), and coastal ponds at Enderts Beach.
Redwood Creek and Klamath River are listed under section 303(d) of the Clean Water Act for high water temperature and unacceptable levels of sedimentation and nutrients (see Table 1). Additional stressors include: (1) the presence of introduced invasive species; (2) upstream land use activities (e.g., timber harvest, use of herbicides, and controlled burns); (3) highway- and levee-related perturbations (e.g., road and culvert failures, runoff and toxic spills, and levee maintenance); (4) contamination from septic system leaching and illegal garbage/trash dumping; and (5) riparian/bank disturbance associated with recreational fishing. Park watershed rehabilitation activities and in-channel gravel extraction additionally impact Redwood Creek. The unimpaired sites will be useful for determining baseline water quality characteristics and range of natural variation of Redwoods streams. Immediate stressors to these systems include runoff and toxic spills from State Highway 229 and U.S. Highway 101 and groundwater draw-down at the Mill Creek Campground.

Stressors affecting marine resources vary according to resource-type. Intertidal and offshore coastal areas can be affected by: (1) climate change and climatic events such as El Niño; (2) offshore oil spills and the dumping of garbage/plastics; (3) reduced downstream sediment transport due to the presence of Klamath River dams; and (4) commercial fishing of smelt and rockfish. Estuaries are affected by changes in hydrology, increased water temperatures, runoff and spills from US Highway 101, and the removal and illegal cutting of wood. The Redwood Creek estuary is also impacted by human activities that degrade riparian habitat, and by dairy farming and flood control projects. Lagoons and coastal ponds can be stressed by human-related perturbations associated with road drainage and maintenance, park development, and potential toxic contamination from an old mill site. The presence or possible introduction of various non-native invasive species (e.g., algae and invertebrates, European beachgrass, and numerous other exotic plants, etc.) can affect all marine resource-types.

The priority vital signs for Redwoods freshwater resources are: (1) 303(d) listed streams (Redwood Creek and Klamath River); (2) upstream land cover and use; (3) recreational fishing; and (4) presence and extent of introduced exotic biota. The priority vital signs for Redwoods marine resources are: (1) commercial fishing; (2) extent of impacts on water quality due to human activities related to flood control and dairy farming (Redwood Creek only); (3) presence and extent of introduced exotic biota; and (4) presence and extent of pollutants (e.g., oil) and garbage/plastics offshore and on beaches. A detailed summary of Redwoods aquatic resource vital signs, potential stress indicators, and associated monitoring options is presented in Tables 18A-C and 19A-C.

Whiskeytown National Recreation Area (WHIS)

Whiskeytown aquatic resources include Whiskeytown Lake, perennial streams, mineral springs, permanent and intermittent small-shallow ponds, and marshes. Water related activities (e.g., boating, sailing, water skiing, kayaking, swimming, fishing, etc.) are the primary recreational focus of visitors to Whiskeytown Lake and are potential stressors of reservoir water quality. Additional stressors related to human activity include: park unit
sewage treatment and wastewater discharge by surrounding communities; marijuana farming and heavy metals contamination from past mining operations on the upstream sections of reservoir tributaries; and water level fluctuations caused by reservoir dam operations. As is the case with many large water bodies in the western USA, the introduction of non-native invasive floral and faunal species impact the native biota of Whiskeytown Lake. Impacted perennial streams have been affected by human-related activity (e.g., past mining operations; treatment and disposal of human waste; marijuana farming; recreation; deteriorating abandoned logging roads; gravel injection and waste rock disposal; prescribed/natural fires and related activities; floods; and introduced non-native invasive biota). The unimpaired perennial streams in Whiskeytown can be used to determine baseline lotic water quality conditions and range of natural variation. However, these streams can also be affected by perturbations of natural and anthropogenic origin. Whiskeytown also contains a complex of mineral springs that supports a small, indigenous population of Howell’s alkali grass (*Puccinellia howellii*), which is listed by the California Native Plant Society as rare and endangered. Stressors to this resource include: (1) littering and garbage dumping, trampling, and off-road vehicle use; (2) change in hydrology; (3) State Highway 299 maintenance and contamination/pollution due to vehicle use and accidents; and (4) potential invasion by saltgrass (*Distichlis spicata*). Little is known about the various permanent and intermittent small-shallow ponds and marshes that occur in Whiskeytown. They, like the unimpaired perennial streams, are susceptible to various types of stress of natural and anthropogenic origin. The priority vital signs of Whiskeytown aquatic resources are: (1) extent of human impacts such as heavy metals contamination associated with past mine operations and tailings; (2a) park unit sewage treatment and disposal; (2b) septic tanks, garbage/trash, and marijuana farming; and (3) extent and occurrence of natural and prescribed fire. A detailed summary of Whiskeytown aquatic resource vital signs, potential stress indicators, and associated monitoring options is presented in Table 20A-E.
TABLE 14: CRATER LAKE NATIONAL PARK VITAL SIGNS TABLES

A: Crater Lake and inner-caldera streams and springs; ponds, lakes and wetlands outside of caldera

<table>
<thead>
<tr>
<th>Priority</th>
<th>Vital Sign</th>
<th>Potential Stress Indicators</th>
<th>Potential Monitoring Options</th>
</tr>
</thead>
</table>
| 3 | Atmospheric deposition of nutrients and pollutants | Change in the concentrations of air-borne nutrients (esp., nitrogen and phosphorus) and pollutants in water samples | A. Continue Crater Lake Long-term Monitoring Program
B. Quantify selected physical, chemical and biological characteristics of lentic systems outside of the caldera
C. Wet/dry chemistry: (a) rain and snow precipitation; (b) snow core
D. Measure pollutants of interest in tissue samples
E. Rapid bioassessment of impact using aquatic macroinvertebrates as indicators |
| 2 | Presence and extent of native/introduced (invasive) aquatic biota | Impacts such as change in the distributions, abundances, percent area occupied (PAO), and community organization and structure of native and introduced aquatic species | A. Quantify the distributions, abundances, and community organization and structure of native and introduced (invasive) aquatic biota |
| 4 | Visitor use impacts – recreational (e.g., hiking, back-packing, camping) on non-caldera sites and motorized boat use on Crater Lake | Change in rates of sedimentation, aquatic macroinvertebrate occurrence (species and community composition), shoreline/riparian impact, and presence of hydrocarbons | A. Quantify, map, and photo-archive shoreline condition of non-caldera sites
B. Collect sediment cores to document historical and contemporary sedimentation rates
C. Quantify macroinvertebrate species distribution and community composition in all aquatic habitats at each site and use rapid bioassessment methods to identify and quantify impact
D. Measure chlorophyll-a concentration in phytoplankton and periphyton
E. Analyze Crater Lake water for hydrocarbons |
| 1 | Climate change (e.g., temperature and precipitation regimes) | Change in parameters such as water temperature, precipitation, water-level, ozone, UVB radiation, etc. | A. Measure water temperature, precipitation, water-level, ozone, UVB radiation, etc. |

B: Sphagnum Bog Research Natural Area

<table>
<thead>
<tr>
<th>Priority</th>
<th>Vital Sign</th>
<th>Potential Stress Indicators</th>
<th>Potential Monitoring Options</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>All vital signs in 1A plus cattle trespass</td>
<td>Change in the physical, chemical and biological characteristics of the bog</td>
<td>A. Quantify physical, chemical and biological characteristics, range of natural variation, and monitor for change</td>
</tr>
</tbody>
</table>
C: Perennial streams and springs outside of the caldera.

<table>
<thead>
<tr>
<th>Priority</th>
<th>Vital Sign</th>
<th>Potential Stress Indicators</th>
<th>Potential Monitoring Options</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Presence and extent of native/ introduced (invasive) aquatic biota</td>
<td>Change in the distributions, abundances, percent area occupied (PAO), and community organization and structure of native and introduced aquatic species</td>
<td>A. Quantify the distributions, abundances, community organization and structure of native and introduced (invasive) aquatic biota</td>
</tr>
</tbody>
</table>
| 2 | Atmospheric deposition of nutrients and pollutants | Change in the concentrations of air-borne nutrients (esp., nitrogen and phosphorus) and pollutants in water samples | A. Quantify selected physical, chemical and biological characteristics of lotic systems
B. Wet/dry chemistry: (a) rain and snow precipitation; (b) snow core
C. Measure periphyton chlorophyll-a concentration
D. Measure pollutants of interest in tissue samples
E. Rapid bioassessment of impact using aquatic macroinvertebrates as indicators |
| 3 | Land and non-recreational human use impacts – Park operations (construction, road and parking lot maintenance) | Change in rates of sedimentation, aquatic macroinvertebrate occurrence (species and community composition), shoreline/riparian impact, increase in hydrocarbons and other pollutants related to construction activities, and parking lot and road maintenance | A. Collect sediment cores to determine historical and contemporary sedimentation rates
B. Quantify species distribution and composition in all aquatic habitats
C. Rapid bioassessment of impact using aquatic macroinvertebrates as indicators
D. Analysis of stream water and runoff from parking lots and roads for hydrocarbons and other potential pollutants
E. Measure periphyton chlorophyll-a concentration |

D: Subsurface geothermal sites in Crater Lake

<table>
<thead>
<tr>
<th>Priority</th>
<th>Vital Sign</th>
<th>Potential Stress Indicators</th>
<th>Potential Monitoring Options</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Subsurface geothermal vents</td>
<td>Change in chemistry, discharge, temperature, etc. due to geothermal exploration near Park boundary</td>
<td>Quantify baseline conditions and natural variation of chemistry, flow and discharge, temperature, bacteria, and other associated biota</td>
</tr>
<tr>
<td>Priority</td>
<td>Vital Sign</td>
<td>Potential Stress Indicators</td>
<td>Potential Monitoring Options</td>
</tr>
<tr>
<td>----------</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>2</td>
<td>Atmospheric deposition of nutrients (esp., nitrogen and phosphorus) and pollutants</td>
<td>Change in the concentrations of nutrients and pollutants</td>
<td>A. Wet/dry chemistry: (a) rain and snow precipitation; (b) snow core</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>B. Chemical analysis of water samples with emphasis on nutrients</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>C. Tissue sample analysis to determine concentrations of pollutants</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>D. Measure chlorophyll-a concentration in phytoplankton and periphyton</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>E. Rapid bioassessment of impact using aquatic macroinvertebrates as indicators</td>
</tr>
<tr>
<td>3</td>
<td>Presence and extent of native/ introduced (invasive) aquatic biota</td>
<td>Change in the distributions, abundances, percent area occupied (PAO), and community organization and structure of native and introduced aquatic species</td>
<td>A. Quantify the distributions, abundances, and community organization and structure of native and introduced (invasive) aquatic biota</td>
</tr>
<tr>
<td>4</td>
<td>Visitor use impacts – recreational (e.g., hiking, backpacking, camping) and land and non-recreational human use impacts - Park operations (e.g., construction, road and parking lot maintenance)</td>
<td>Change in sedimentation rates, aquatic macroinvertebrate occurrence (species and community composition), shoreline/riparian impact, and increase of pollutants</td>
<td>A. Collect sediment cores to determine historical and contemporary sedimentation rates</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>B. Quantify macroinvertebrate species distribution and community composition in all aquatic habitats</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>C. Rapid bioassessment of impact using aquatic macroinvertebrates as indicators</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>D. Analysis of stream water and runoff from parking lots and roads for hydrocarbons and other pollutants</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>E. Measure chlorophyll-a concentration in phytoplankton and periphyton</td>
</tr>
<tr>
<td>1</td>
<td>Climate change (e.g., temperature and precipitation regimes)</td>
<td>Change in parameters such as water temperature, precipitation, water-level, ozone, UVB radiation, etc.</td>
<td>A. Measure precipitation, water temperature, water-level, flow rates, UVB radiation, ozone, etc.</td>
</tr>
<tr>
<td>Priority</td>
<td>Vital Sign</td>
<td>Potential Stress Indicators</td>
<td>Potential Monitoring Options</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------------------------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Visitor use impacts - recreational</td>
<td>Change in measured parameters (e.g., water chemistry and temperature, flow, discharge, etc.)</td>
<td>A. Continue on-going monitoring as part of USGS Volcano Monitoring Program</td>
<td></td>
</tr>
</tbody>
</table>
TABLE 16: LAVA BEDS NATIONAL MONUMENT VITAL SIGNS TABLES

A: Permanent ice caves

<table>
<thead>
<tr>
<th>Priority</th>
<th>Vital Sign</th>
<th>Potential Stress Indicators</th>
<th>Potential Monitoring Options</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Climate change (e.g., temperature and precipitation regimes)</td>
<td>Change in air temperature and relative humidity in caves</td>
<td>A. Identify and quantify ice sources</td>
</tr>
<tr>
<td></td>
<td>In cave air currents and movement</td>
<td>Change in ice chemistry and ice levels in caves</td>
<td>B. Measure air temperature, relative humidity, and ice-levels in caves</td>
</tr>
<tr>
<td>3</td>
<td>Agricultural chemicals in cave ice and water</td>
<td>Increase in the concentrations of agricultural chemicals and hydrocarbons in ice and water in caves</td>
<td>C. Chemical analysis of ice samples for basic water quality and concentrations of hydrocarbons and agricultural chemicals of interest</td>
</tr>
<tr>
<td>4</td>
<td>Extent of impact on water quality of activities associated with park unit development, visitor usage, and water runoff from roads</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

B: Seasonal ice caves

<table>
<thead>
<tr>
<th>Priority</th>
<th>Vital Sign</th>
<th>Potential Stress Indicators</th>
<th>Potential Monitoring Options</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Physical, chemical and biological characteristics of caves</td>
<td>Change in characteristics of caves due to nearby geothermal exploration and agricultural activities</td>
<td>A. Measure air temperature, relative humidity, and available water in caves</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>B. Identify biota residing in or using caves and quantify resident community organization and structure and rates of use by non-resident biota</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>C. Quantify physical characteristics of caves and quality of available water (including concentrations of agricultural chemicals of interest)</td>
</tr>
</tbody>
</table>

C: Intermittent ephemeral ponds

<table>
<thead>
<tr>
<th>Priority</th>
<th>Vital Sign</th>
<th>Potential Stress Indicators</th>
<th>Potential Monitoring Options</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Climate change (e.g., temperature and precipitation regimes)</td>
<td>Change in the timing, longevity and physical characteristics of ponds</td>
<td>A. Identify and inventory ponds</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>B. Quantify timing, longevity and physical characteristics of ponds</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>C. Quantify water quality (esp., chemistry and biology)</td>
</tr>
</tbody>
</table>

D: Groundwater

<table>
<thead>
<tr>
<th>Priority</th>
<th>Vital Sign</th>
<th>Potential Stress Indicators</th>
<th>Potential Monitoring Options</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Groundwater</td>
<td>Change in the availability, depth and quality of groundwater due to nearby geothermal exploration, agricultural activities (esp., irrigation and chemical use) and timber harvest</td>
<td>A. Quantify the physical and chemical characteristics of groundwater throughout the Park</td>
</tr>
</tbody>
</table>
Table 17: Oregon Caves National Monument Vital Signs Tables

A: In-cave stream and springs

<table>
<thead>
<tr>
<th>Priority</th>
<th>Vital Sign</th>
<th>Potential Stress Indicators</th>
<th>Potential Monitoring Options</th>
</tr>
</thead>
</table>
| 2 | Cave environment | Changes in cave environment (including air temperature, evaporation rates, relative humidity and concentrations of total carbonates, chloride and total dissolved solids) due to modification of cave opening | A. Measure air temperature, evaporation, relative humidity and concentrations of total carbonates, chloride and total dissolved solids
B. Identify and quantify the abundance of cave-adapted biota
C. Quantify timing and extent of snowmelt
D. Monitor calcite solubility |
| 3 | Visitor use impacts - recreation | Change in the presence and amount of litter and organic contaminants (e.g., lint) | A. Identify and quantify presence of litter and organic contaminants and monitor for change |
| 4 | Cave environment (esp., light) | Effect of the timing and duration of artificial light on cave-adapted biota and potential increase in abundance of light-adapted biota | A. Measure timing and duration of artificial light
B. Identify and quantify the presence and abundance of cave- and light-adapted biota |
| | In-cave algae (and its control) | Increase in the presence and concentrations of sodium hypochlorite and hydrogen peroxide in water samples | A. Measure presence and concentrations of sodium hypochlorite and hydrogen peroxide in water samples |
| | Use of surface water for fire suppression | Change in flow rates and availability (i.e., quantity) of water in cave stream and springs | A. Measure flow and discharge of cave stream and springs |

B: Perennial surface streams

<table>
<thead>
<tr>
<th>Priority</th>
<th>Vital Sign</th>
<th>Potential Stress Indicators</th>
<th>Potential Monitoring Options</th>
</tr>
</thead>
</table>
| 1 | Drain field contamination of Cave Creek | Increase in nitrate, orthophosphate and fecal coliform concentrations, and changes in the presence of aquatic macroinvertebrate species and community composition | A. Measure nitrate, orthophosphate and fecal coliform concentrations in water samples
B. Identify and quantify macroinvertebrate species distribution and community composition in Cave Creek; use rapid bioassessment methods to identify change |
| | Debris flows and catastrophic fire | Increase in bank and channel erosion, sediment input and loss of water clarity | A. Measure channel longitudinal profile, frequency and distribution of upwelling zones, flow and discharge rates, bedload, and concentrations of suspended and total dissolved solids |
| | Port Orford cedar root rot | Presence of the fungus *Phytophthora lateralis* and dead trees | A. Identify, quantify, and monitor vegetation patterns and number and distribution of dead trees |
| | Climate change | Change in the timing, depth and duration of snow pack and quantity of surface water | A. Measure the timing, depth and duration of snow pack
B. Measure flow and discharge rates of streams |
| | Cattle grazing near water supply | Presence of *Giardia* and *Cryptosporidium* in water supply | A. Monitor for presence of *Giardia* and *Cryptosporidium* in samples from water supply |
TABLE 18: REDWOOD NATIONAL AND STATE PARKS VITAL SIGNS TABLES (FRESHWATER)

A: Impaired perennial streams (Redwood Creek and Klamath River)

<table>
<thead>
<tr>
<th>Priority</th>
<th>Vital Sign</th>
<th>Potential Stress Indicators</th>
<th>Potential Monitoring Options</th>
</tr>
</thead>
</table>
| 1 | 303(d) listed for high water temperatures, nutrients and sedimentation/siltation | Change in the physical, chemical, and biological characteristics of streams including: (1) water temperature, (2) sedimentation rate and clarity, (3) flow and discharge rates, (4) nitrogen concentration, (5) primary productivity, (6) presence and abundance of native and invasive biota, (7) occurrence of invasive biota, (8) salmonid spawning activity and recruitment, (9) abundance of large woody debris | A. Rapid bioassessment of impact using aquatic macroinvertebrates as indicators
B. Water temperature monitoring
C. Measure suspended sediment and turbidity, bedload, flow and discharge
D. Mainstem cross-sections
E. Quantify status and trends of water chemistry and assessment of presence of highway and motor vehicle derived contaminants |
| 2 | Presence and extent of invasive aquatic biota (i.e., catfish) | | |
| 2 | Upstream land cover and use | | |
| 3 | Condition of roads (i.e., road failures and Hwy 101 bypass runoff and spills) | | |
| 3 | Private septic systems and illegal dumping of garbage and trash | | |
| 3 | Park watershed rehabilitation activities and gravel removal (Redwood Creek only) | | |
| 3 | Recreational fishing | | |
| 3 | Levee maintenance | | |

B: Unimpaired perennial streams (e.g., Godwood, Upper Prairie, and Hayes Creeks; Smith River)

<table>
<thead>
<tr>
<th>Priority</th>
<th>Vital Sign</th>
<th>Potential Stress Indicators</th>
<th>Potential Monitoring Options</th>
</tr>
</thead>
</table>
| | Useful as reference sites for baseline water quality data and determination of range of variability | Change in the physical, chemical, and biological characteristics of streams including: (1) water temperature, (2) sedimentation rate and clarity, (3) flow and discharge rates, (4) nitrogen concentration, (5) primary productivity, (6) presence and abundance of native biota, (7) occurrence of invasive biota (8) salmonid spawning activity and recruitment, (9) abundance of large woody debris | A. Quantify water temperature, sediment, turbidity, bedload, flow and discharge
B. Rapid bioassessment of impact using aquatic macroinvertebrates, fish and freshwater mussels as indicators
C. Sample large woody debris
D. Quantify status of anadromous and resident fish, and native amphibians
E. Quantify fish carcasses and redds
F. Water table monitoring
G. Quantify selected water quality parameters |
| | Groundwater draw-down at Mill Creek Campground | | |
| | Hwy 199 and 299 runoff and spills | | |
TABLE 18: REDWOOD NATIONAL AND STATE PARKS VITAL SIGNS TABLES (FRESHWATER CONTINUED)

C: Freshwater ponds and wetlands (Marshall Pond, small ponds at Gold Bluffs Beach)

<table>
<thead>
<tr>
<th>Priority</th>
<th>Vital Sign</th>
<th>Potential Stress Indicators</th>
<th>Potential Monitoring Options</th>
</tr>
</thead>
</table>
| 4 | Atmospheric deposition of nutrients and other pollutants, and air quality | Change in the physical, chemical and biological characteristics of ponds and wetlands beyond natural variation | A. Quantify water quality conditions and range of variation
B. Quantify community composition of aquatic biota and determine extent of presence of introduced biota
C. Quantify trends of native amphibians
D. Rapid bioassessment of impact using aquatic macroinvertebrates as indicators |
| | Presence and extent of introduced exotic plants, bullfrogs, and fish | Former mill site | |
Table 19: Redwood National and State Parks Vital Signs Tables (Marine)

A: Intertidal and offshore coastal

<table>
<thead>
<tr>
<th>Priority</th>
<th>Vital Sign</th>
<th>Potential Stress Indicators</th>
<th>Potential Monitoring Options</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Climate change and events (e.g., El Niño; temperature and precipitation regimes)</td>
<td>Change in ocean processes (e.g., upwelling, wave action, nearshore currents), water and air temperature, ozone, UVB radiation</td>
<td>A. Quantify trends of wave action, nearshore currents and upwelling, and monitor for change beyond natural range of variation</td>
</tr>
<tr>
<td></td>
<td>Presence and extent of pollutants (e.g., oil) and garbage/plastics offshore and on beaches</td>
<td>Catastrophic mortality of shorebirds and marine biota</td>
<td>B. Measure water and air temperatures, ozone, UVB radiation</td>
</tr>
<tr>
<td>3</td>
<td>Presence and extent of invasive biota (e.g., European beachgrass, invertebrates, algae, etc.)</td>
<td>Increase in presence of invasive species concordant with decline in native species</td>
<td>C. Quantify trends of seabirds/shorebirds and coastal invertebrates and use indicator species for rapid bioassessment of impacts</td>
</tr>
<tr>
<td></td>
<td>Sediment flux from Klamath River dams</td>
<td>Change in smelt and rockfish abundances</td>
<td>D. Quantify distribution of sediment composition and particle size, and trends of sediment flux</td>
</tr>
<tr>
<td>1</td>
<td>Commercial fishing activities (e.g., smelt, nearshore rockfish fishery)</td>
<td></td>
<td>E. Quantify trends of smelt and rockfish populations</td>
</tr>
</tbody>
</table>

B: Lagoons (Espa, Lagoon Creek, Enderts Beach pond)

<table>
<thead>
<tr>
<th>Priority</th>
<th>Vital Sign</th>
<th>Potential Stress Indicators</th>
<th>Potential Monitoring Options</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sedimentation due to roads, culverts, road drainage and Park development</td>
<td>Increase in sedimentation rate and decrease in water-level and depth</td>
<td>A. Measure water-level and depth</td>
</tr>
<tr>
<td></td>
<td>Water contamination from old mill site</td>
<td>Presence of toxins in water and tissue samples</td>
<td>B. Quantify plant community composition and monitor for change</td>
</tr>
<tr>
<td></td>
<td>Presence and extent of introduced/invasive species (e.g., fish stocking and aquatic weeds)</td>
<td>Presence of introduced/invasive species with concordant decrease in native biota</td>
<td>C. Quantify trends of water quality and presence of toxins</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>D. Quantify trends of native and introduced/invasive biota; also trends of amphibians (primarily anurans)</td>
</tr>
</tbody>
</table>
TABLE 19: REDWOOD NATIONAL AND STATE PARKS VITAL SIGNS TABLES (MARINE CONTINUED)

C: Estuaries (Redwood Creek, Klamath River)

<table>
<thead>
<tr>
<th>Priority</th>
<th>Vital Sign</th>
<th>Potential Stress Indicators</th>
<th>Potential Monitoring Options</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Presence and extent of invasive species/exotic grasses (e.g., canary grass)</td>
<td>Increase in the presence of invasive species/exotic grasses and decrease in native species (including threatened and endangered species)</td>
<td>A. Sample sediment and quantify trends of sediment deposition</td>
</tr>
<tr>
<td></td>
<td>Hydrological changes and increased water temperatures</td>
<td>Continued degradation of riparian habitat</td>
<td>B. Quantify extent of Canary grass</td>
</tr>
<tr>
<td></td>
<td>Extent of impacts on water quality due to human impacts related to flood control and dairy farming (Redwood Creek only)</td>
<td>Change in sediment deposition, water temperature and flow, and distribution of large woody debris</td>
<td>C. Quantify selected riparian habitat parameters</td>
</tr>
<tr>
<td></td>
<td>Extent of illegal woodcutting</td>
<td>Presence of bacterial indicators of fecal contamination (Redwood Creek only)</td>
<td>D. Sample large woody debris</td>
</tr>
<tr>
<td></td>
<td>Hwy 101 bypass runoff and spills</td>
<td>Presence of highway and motor vehicle derived contaminants</td>
<td>E. Water temperature and flow monitoring</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>F. General water quality monitoring (esp., bacterial indicators of fecal contamination, Redwood Creek only)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>G. Quantify trends of native and introduced/invasive species</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>H. Determine the presence of and quantify trends of highway and motor vehicle derived contaminants</td>
</tr>
</tbody>
</table>
TABLE 20: WHISKEYTOWN NATIONAL RECREATION AREA VITAL SIGNS TABLES

A: Whiskeytown Lake (Reservoir)

<table>
<thead>
<tr>
<th>Priority</th>
<th>Vital Sign</th>
<th>Potential Stress Indicators</th>
<th>Potential Monitoring Options</th>
</tr>
</thead>
</table>
| | Visitor use -recreation: terrestrial, boating, swimming and other water-related activities | Beach and shoreline erosion
Increase in: bacterial indicators of fecal contamination, nitrogen and phosphorus due to fertilizer use, herbicides and pesticides, and petroleum-based contaminants | A. Quantify trends of selected water quality parameters (esp., nutrients and hydrocarbons)
B. Measure concentrations of fecal indicator bacteria
C. Measure concentrations of herbicides and pesticides in tissue samples (highest trophic-level possible)
D. Document presence of petroleum-based discharges on water surface
E. Measure indicators of beach/shoreline erosion (vegetation and trail impact mapping, photo-archive, sediment cores) |
| | Extent of upstream marijuana farming | | |
| 2a | Park sewage treatment and waste water discharge of surrounding communities | Increase in concentrations of nitrate and phosphorus and presence of bacterial indicators of fecal contamination | A. Measure nitrate and phosphorus concentrations near potential discharge sites and test for fecal indicator bacteria |
| | Presence and extent of native/ introduced (invasive) aquatic biota | Increase in occurrence and abundance of invasive species | A. Quantify trends of invasive species: presence, abundance, rates of recruitment and mortality |
| | Water level fluctuations due to reservoir operations and evaporation | Increase in nearshore sedimentation, change in beach profiles and aquatic macroinvertebrate species presence and community organization | A. Measure total dissolved solids and rates of sedimentation
B. Photo-archive and map beach profiles
C. Monitor reservoir water-level
D. Quantify macroinvertebrates species distribution and community organization in all nearshore habitats; assess using rapid bioassessment methods |
| | Presence of the dam | Disruption of native salmonid passage into upper reaches of reservoir tributaries | A. Measure presence and abundance of salmonids below and above dam |
| | Concentrations of heavy metals | Presence and increase in concentrations of heavy metals in reservoir water | A. Measure concentrations of heavy metals (e.g., mercury, cadmium, nickel, iron, and arsenic) in tissue samples (highest trophic-level possible) |
| | | | |
B: Impaired perennial streams

<table>
<thead>
<tr>
<th>Priority</th>
<th>Vital Sign</th>
<th>Potential Stress Indicators</th>
<th>Potential Monitoring Options</th>
</tr>
</thead>
</table>
| 1 | Human impacts including: - mine operations and tailings - septic tanks, garbage, trash and marijuana farming - visitor usage (e.g., horses and mountain bikes) | Increase in concentrations of heavy metals, nitrogen, phosphorus, herbicides and pesticides; presence of fecal indicator bacteria; change in sedimentation rate, water clarity and temperature; soil compaction leading to lower infiltration rates; increase in the presence of litter and trash | A. Quantify trends of selected water quality parameters (esp., nitrogen, phosphorus, pH, conductivity, total dissolved solids)
B. Measure concentrations of fecal indicator bacteria
C. Monitor for the presence of oil products and other hazardous wastes, litter and trash
D. Measure sedimentation rate, turbidity, bedload, water temperature
E. Photo-archive and map shoreline soil compaction
F. Quantify macroinvertebrate species distribution and community organization in all aquatic habitats; assess using rapid bioassessment methods
G. Measure heavy metals concentrations in tissue samples |
| | Gravel injection; sedimentation due to roads and deteriorating condition of abandoned logging roads; waste rock disposal | Change in sedimentation rates, channel morphology, flow regime, biota, and metals content | A. Measure suspended and total dissolved solids, turbidity, bedload, water temperature and pH
B. Measure channel morphology (e.g., pool/riffle sequence, channel width/depth profiles)
C. Measure heavy metals concentrations in tissue samples (highest trophic-level possible) |
| | Species of concern and presence and extent of invasive species | Decline in species of concern | A. Quantify trends of species of concern and invasive species: presence, abundance, rates of recruitment and mortality
B. Quantify condition of habitat quality for species of concern |
| 3 | Fire occurrence and extent: prescribed burns, natural wildfires, construction of fuel breaks, other fire-related activities | Change in physical, chemical, and biological characteristics of streams | A. Measure sedimentation rate, turbidity, bedload, water temperature
B. Measure channel morphology (e.g., pool/riffle sequence, channel width/depth profiles)
C. Measure water chemistry (esp., nitrogen)
D. Rapid bioassessment of impact using aquatic macroinvertebrates as indicators |
| | Floods (natural and due to water release from dam) | Change in water temperature and concentrations of heavy metals | A. Measure water temperature and heavy metal concentrations |

C: Unimpaired perennial streams

<table>
<thead>
<tr>
<th>Priority</th>
<th>Vital Sign</th>
<th>Potential Stress Indicators</th>
<th>Potential Monitoring Options</th>
</tr>
</thead>
</table>
| | Impacts of natural and anthropogenic origin | Change in physical, chemical and biological characteristics of streams beyond range of natural variation | A. Quantify selected characteristics of streams
B. Quantify trends of species of concern and invasive species: presence, abundance, rates of recruitment and mortality |
D: Complex of mineral springs and Howell’s alkali grass (*Puccinellia howellii*)

<table>
<thead>
<tr>
<th>Priority</th>
<th>Vital Sign</th>
<th>Potential Stress Indicators</th>
<th>Potential Monitoring Options</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hwy 299: accidents, construction, maintenance, hydrocarbon pollution, and other contaminants</td>
<td>Decline in already small population size of indigenous Howell’s alkali grass</td>
<td>A. Quantify selected characteristics of the Howell’s alkali grass population and saltgrass (esp., inventory, map, and photo-archive)</td>
</tr>
<tr>
<td></td>
<td>Visitor use: litter and garbage dumping, vehicle parking and off-road use, trampling</td>
<td></td>
<td>B. Monitor hydrology of springs</td>
</tr>
<tr>
<td></td>
<td>Hydrology</td>
<td></td>
<td>C. Quantify visitor use and types of pollution; monitor for change</td>
</tr>
<tr>
<td></td>
<td>Invasion and exclusion by saltgrass (Distichlis spicata)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

E: Permanent small-shallow ponds, intermittent ephemeral ponds, marshes

<table>
<thead>
<tr>
<th>Priority</th>
<th>Vital Sign</th>
<th>Potential Stress Indicators</th>
<th>Potential Monitoring Options</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Impacts of natural and anthropogenic origin</td>
<td>Change in the physical, chemical and biological characteristics of these resources beyond the range of natural variation</td>
<td>A. Quantify selected physical, chemical, and biological characteristics</td>
</tr>
</tbody>
</table>
D. NETWORK-LEVEL VITAL SIGNS ASSESSMENT

Priority Aquatic Resource Monitoring Questions

Two of the 10 most important network-wide vital signs monitoring questions identified at a Klamath Network meeting in Redding, California, April 27-28, 2005, were aquatic resource-focused. The top 10 monitoring questions (out of 172 monitoring questions and associated vital signs) were selected based on the total rating assigned to them by the individuals who participated in the Klamath Network vital signs/monitoring question rating process.

The two aquatic resources monitoring questions are:

1) What is the status and what are the trends of surface waters and pollutants, and
2) What is the status and what are the trends in structure, function and composition of locally limited (i.e., focal) aquatic communities?

The vital signs for each question are, respectively:

1) Water quality characteristics of surface and subterranean freshwater resources, and marine resources; and
2) Aquatic biota and communities.

Aquatic Resource Vital Signs Categories

Five general vital signs categories (Table 21) were identified from the park unit Vital Signs Tables (Tables 14-20, pages 61-73) as potentially affecting Klamath Network park unit freshwater resources: (1) atmospheric deposition of nutrients (e.g., nitrogen and phosphorus) and pollutants (e.g., mercury, persistent organics flame retardants, water-repellent coatings, etc.); (2) presence and extent of native/introduced (invasive) aquatic biota (e.g., bullfrogs, exotic fish, invertebrates, algae, etc.); (3) climate change (e.g., changes in air and water temperature regimes and the timing and longevity of precipitation events and snow pack, etc.); (4) visitor use impacts - recreational; and (5) land and non-recreational human use impacts. Visitor use impacts - recreational was divided into four types of impact subcategories ranging from general impacts in the more developed and maintained areas in park units to backcountry impacts caused by activities such as hiking, backpacking, and camping. The land and non-recreational human use impacts category was divided into 15 types of impacts subcategories representing activities that include road construction and maintenance, treatment and deposition of human waste, dam operation and maintenance, agriculture, and past and present resource extraction operations (e.g., mining, timber harvest, geothermal exploration). A relatively high number of vital signs categories and subcategories (Table 22) were associated with lentic (12 of 22; 55%), lotic (15 of 22; 68%), and unique water resources (10 of 22; 45%). Lotic systems were also identified as especially associated with land and non-recreational human use impact subcategories (i.e., 10 of 15 compared to 6 of 15 for lentic and unique water resources; Table 22). The vital sign categories and subcategories
associated with cave water resources (e.g., ice, streams and springs) were climate change, visitor use, manipulation of the cave environment, park unit operations and nearby agricultural activities, and activities associated with fire suppression. Geothermal/hydrothermal resources were identified as being generally affected by visitor use and geothermal exploration near, yet beyond park unit boundaries.

The three Redwoods marine resource-types were identified as being variously associated with three of the five general vital signs categories: (1) climate change; (2) presence and extent of native/introduced (invasive) aquatic biota; and (3) land and non-recreational human use impacts (Table 23). The land and non-recreational human use impacts category was divided into nine types of impact subcategories. Climate change was identified as only associated with the intertidal/coastal offshore resource-type, whereas the presence and extent of native/introduced (invasive) aquatic biota was an important vital sign for lagoons and estuaries. Each resource-type was identified as being susceptible to two or more types of land and non-recreational human use impacts.
TABLE 21: GENERAL VITAL SIGNS CATEGORIES AND SUBCATEGORIES AND THEIR APPLICABILITY IN EACH KLAMATH NETWORK PARK UNIT

<table>
<thead>
<tr>
<th>Vital Sign</th>
<th>CRLA</th>
<th>LAVO</th>
<th>LABE</th>
<th>ORCA</th>
<th>RNSP</th>
<th>WHIS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Atmospheric deposition of nutrients and pollutants</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Presence & extent of native/introduced (invasive) aquatic biota</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Climate change (e.g., temperature & precipitation regimes)</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>4. Visitor use impacts – recreational</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A. General impacts</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B. Hiking, backpacking, camping, horses, mountain bicycles</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C. Motorized boats and boat-related activities</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D. Swimming, fishing, etc.</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Land & non-recreational human use impacts</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A. Park operations (construction, development, parking lot/road and levee maintenance)</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>B. Roads: construction, maintenance, failure, culverts, runoff and spills</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C. Past mining operations/heavy metals</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D. Dam operations, water-level and sediment flux</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E. Sewage treatment, wastewater discharge, septic and drain field contamination</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F. 303(d) listed water bodies</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G. Former mill site and operations</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H. Fire: wild and prescribed; suppression</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I. Timber harvest and operations (including herbicide application)</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>J. Agriculture: contamination by fertilizers, herbicides and pesticides; irrigation</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K. Manipulation of cave environment (esp., light and control of algae)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L. Geothermal exploration and activities near Park boundary</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M. Litter and garbage dumping</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N. Vehicle parking and off-road use</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O. Impacts associated with cattle (grazing and trespass)</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 22: General Vital Signs Categories and Subcategories and Their Applicability to Each Freshwater Resource-Type in Klamath Network Park Units

[p = Permanent; Geo/Hydro = Geothermal/Hydrothermal; unqRes = Unique Resource including Intermittent Ephemeral Ponds and Seasonal Ice Caves (LABE), Mineral Springs Complex (WHIS), and Sphagnum Bog Research Natural Area (CRLA)]

<table>
<thead>
<tr>
<th>Vital Sign</th>
<th>pLentic</th>
<th>pLotic</th>
<th>Geo/Hydro</th>
<th>Caves</th>
<th>unqRes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Atmospheric deposition of nutrients and pollutants</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>2. Presence & extent of native/introduced (invasive) aquatic biota</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Climate change (e.g., temperature & precipitation regimes)</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Visitor use impacts – recreational</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A. General impacts</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>B. Hiking, backpacking, camping, horses, mountain bicycles</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C. Motorized boats and boat-related activities</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D. Swimming, fishing, etc.</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Land & non-recreational human use impacts</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A. Park operations (construction, development, parking lot/road and levee maintenance)</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B. Roads: construction, maintenance, failure, culverts, runoff and spills</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C. Past mining operations/heavy metals</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D. Dam operations, water-level and sediment flux</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E. Sewage treatment, wastewater discharge, septic and drain field contamination</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F. 303(d) listed water bodies</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G. Former mill site and operations</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H. Fire: wild and prescribed; suppression</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I. Timber harvest and operations</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>J. Agriculture: fertilizers, herbicide and pesticide contamination, irrigation</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>K. Manipulation of cave environment (esp., light and control of algae)</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L. Geothermal exploration and activities near Park boundary</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M. Litter and garbage dumping</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N. Vehicle parking and off-road use</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O. Impacts associated with cattle (grazing and trespass)</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
TABLE 23: GENERAL VITAL SIGNS CATEGORIES AND SUBCATEGORIES AND THEIR APPLICABILITY TO THREE GENERAL TYPES OF MARINE RESOURCES AT REDWOOD NATIONAL AND STATE PARKS, KLAMATH NETWORK

<table>
<thead>
<tr>
<th>Vital Sign</th>
<th>Intertidal/Coastal Offshore</th>
<th>Lagoons</th>
<th>Estuaries</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Climate change (e.g., temperature and precipitation regimes, El Nino)</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Presence & extent of native/introduced (invasive) aquatic biota</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>3. Land & non-recreational human use impacts</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A. Oil spills</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B. Litter and garbage dumping</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C. Sediment flux (dams)</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D. Commercial fishing</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E. Sedimentation (roads, runoff, spills and culverts)</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>F. Contamination from old mill site</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G. Flood control levees</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H. Dairy farming</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I. Illegal woodcutting</td>
<td></td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Vital Signs Prioritization

Vital signs were prioritized for each park unit by staff at each park unit relative to the perceived importance of including each vital sign category as part of an aquatic resources monitoring program. The prioritization of vital signs varied among the units (Table 24):

1. Crater Lake identified each of the five general vital signs as important for monitoring the park’s lentic and lotic resources;
2. Lassen did not identify any of the land and non-recreational human use impact subcategories as potentially affecting the park’s water resources;
3. Climate change was identified as the top priority vital sign at Lava Beds, followed by four types of land and non-recreational human use impacts (i.e., park unit operations, timber harvest/operations, agriculture, and geothermal exploration);
4. Land and non-recreational human use impacts (esp., associated with human waste disposal and timber harvest), climate change, and visitor use impacts – recreational (i.e., general impacts) were identified as priority vital signs for Oregon Caves;
5. Redwoods did not identify atmospheric deposition of nutrients and pollutants as a priority vital sign for the park’s freshwater and marine resources;
6. The only vital sign identified as important for Whiskeytown aquatic resources was land and non-recreational human use impacts and included three priority subcategories (i.e., past mining operations, dam operation and water-level flux, and impacts due to fire and fire suppression).
THABE 24: PRIORITY RATINGS FOR EACH OF FIVE GENERAL AQUATIC RESOURCE VITAL SIGN CATEGORIES AND SUBCATEGORIES. RATINGS FOR EACH Klamath Network Park unit are from 1-4 with 1 being the highest priority. The two CRLA ratings are lentic/lotic; the two RNSP ratings are freshwater/marine; the two WHIS ratings are dam operations/water-level flux.

<table>
<thead>
<tr>
<th>Vital Sign</th>
<th>CRLA</th>
<th>LAVO</th>
<th>LABE</th>
<th>ORCA</th>
<th>RNSP</th>
<th>WHIS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Atmospheric deposition of nutrients and pollutants</td>
<td>3 / 2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Presence & extent of native/introduced (invasive) aquatic biota</td>
<td>2 / 1</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Climate change (e.g., temperature and precipitation regimes)</td>
<td>1 / -</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>- / 3</td>
<td></td>
</tr>
<tr>
<td>4. Visitor use impacts – recreational</td>
<td>4 / -</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A. General impacts</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>B. Hiking, backpacking, camping, horses, mountain bicycles</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>C. Motorized boats and boat-related activities</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3 / -</td>
</tr>
<tr>
<td>D. Swimming, fishing, etc.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Land & non-recreational human use impacts</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- / 1</td>
</tr>
<tr>
<td>A. Park operations (construction, development, parking lot/road and levee maintenance)</td>
<td>- / 3</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B. Roads: construction, maintenance, failure, culverts, runoff and spills</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C. Past mining operations/heavy metals</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>D. Dam operations, water-level and sediment flux</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- / 4</td>
<td>2a / 2b</td>
</tr>
<tr>
<td>E. Sewage treatment, wastewater discharge, septic and drain field contamination</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>F. 303(d) listed water bodies</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1 / -</td>
<td></td>
</tr>
<tr>
<td>G. Former mill site and operations</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2a / -</td>
<td>3</td>
</tr>
<tr>
<td>H. Fire: wild and prescribed; suppression</td>
<td></td>
<td></td>
<td></td>
<td>2a / -</td>
<td>2</td>
<td>2b / -</td>
</tr>
<tr>
<td>I. Timber harvest and operations (including herbicide application)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>J. Agriculture: fertilizers, herbicide and pesticide contamination, irrigation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>K. Manipulation of cave environment (esp., light and control of algae)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L. Geothermal exploration and activities near Park boundary</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2b</td>
<td></td>
</tr>
<tr>
<td>M. Litter and garbage dumping</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N. Vehicle parking and off-road use</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O. Impacts associated with cattle (grazing and trespass)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
An index was created to determine the perceived importance of each general vital sign category at the network-level. The index was calculated for each vital sign by adding the priority rating (i.e., 1–4, with 1 being the highest priority) assigned to the vital sign by each park unit (Table 24). If a park unit did not assign a rating to a vital sign then a rating of 5 was assigned to that vital sign for that unit. If a park unit assigned two or more ratings to a vital sign (e.g., CRLA atmospheric deposition = 3/2; LABE land and non-recreational human use impacts = 4/2a/3/2b; Table 24) then the ratings for that vital sign were averaged. The average index for all park units for each general vital sign was calculated as:

1. \[\frac{(\text{CRLA} + \text{LAVO} + \text{LABE} + \text{ORCA} + \text{RNSP} + \text{WHIS})}{6 \text{ park units}}. \]

For example:

1. atmospheric deposition = \[\frac{[3+2/2+2+5+5+5+5]}{6} = 4.1, \]
2. land use = \[\frac{[3+5+(4+2+3+2/4)+(1+2/2)+(1+4+1+2+3/4)+(1+2+2+3/4)]}{6} = 2.7. \]

Two basic groups of vital signs were identified based on the calculation of the average index for each of the five general vital signs: (1) climate change and land and non-recreational human use impacts scored 2.7; and (2) presence and extent of native/introduced (invasive) aquatic biota, visitor use impacts - recreational, and atmospheric deposition scored between 3.8 and 4.1.

1. Climate change: mean = 2.7; median = 1.5; 5 of 6 park units
2. Land use impacts: mean = 2.7; median = 2.4; 5 of 6 park units
3. Native/introduced biota: mean = 3.8; median = 4.0; 3 of 6 park units
4. Visitor use impacts - recreational: mean = 4.0; median = 4.0; 4 of 6 park units
5. Atmospheric deposition: mean = 4.1; median = 5.0; 2 of 6 park units.

Monitoring Questions, Potential Indicators of Resource Stress, and Associated Monitoring Options

A monitoring question was developed for each of the five general aquatic resource vital signs categories. Each question was general in scope so as to be applicable to each park unit. Next, a list of potential stress indicators (i.e., characteristics that can be measured and are useful indicators of change and/or perturbation) for each vital sign category was created by compiling and synthesizing indicators from each park-specific Vital Signs Table (Tables 14-20). Indicators were chosen that could be used to answer each monitoring question. Finally, a list of potential monitoring options consisting of a parameter or set of parameters to be sampled and useful for quantifying resource change and/or perturbation was also created by compiling and synthesizing responses from the park-specific Vital Signs Tables. This process created a relatively detailed outline of potential stress indicators and monitoring options. Indicators and monitoring options can be revised and refined as necessary during the development of the Klamath Network water quality monitoring program.
1. **Basic information** that would be helpful to have for each resource-type prior to implementation of a monitoring program:

 A. Complete inventory (or as complete as possible) of sites in each park unit.

 B. Status and trends:
 1) Analyze data to elucidate the present physical, chemical and biological characteristics of (at least) a subset of sites; and
 2) Determine the present variability among sites.

 C. Identify sites potentially not affected by impacts due to recreational visitor use, park unit operations, or nearby past and present land use activities. These sites will be potentially useful for determining, at least in a relative sense, the characteristics and variation among ‘pristine’ sites to which impacted sites can be compared.

2. **Climate change (e.g., temperature and precipitation regimes):**

 A. Monitoring question: What impacts do global and local changes in climate have on Klamath Network park unit aquatic resources (especially regarding such parameters as the timing and extent of precipitation, water and air temperature ranges, air currents, relative humidity, evaporation rates, ozone-levels, and UVB radiation flux and attenuation); and how do these impacts affect resource condition, quality, and ecosystem dynamics?

 B. Indicators of stress:
 1) Change in climate-related parameters such as (a) water and air temperature, (b) relative humidity, (c) timing and amount of precipitation (rain and snow), (d) water-level, (e) flow and discharge rates, (f) ozone levels, (g) UVB radiation flux and attenuation, and ocean processes (e.g., upwelling, wave action, nearshore currents);
 2) Change in the timing, longevity and physical characteristics of intermittent ephemeral ponds (primarily at LABE).

 C. Monitoring Options:
 1) Measure water and air temperature, relative humidity, precipitation, water-level, flow and discharge rates, ozone levels, and UVB radiation flux and attenuation;
 2) Quantify trends of wave action, upwelling, and nearshore currents; and measure for change beyond normal statistical variation;
 3) Quantify the timing, depth, and duration of snow pack; and the timing and extent of snow melt;
 4) Identify and quantify ice sources and intermittent ephemeral ponds (LABE);
5) Determine extent of ice sources and measure ice-levels, evaporation rates, concentrations of total carbonates and calcite solubility (LABE and ORCA);
6) Quantify the timing, longevity and physical characteristics of intermittent ephemeral ponds (LABE).

3. **Land and non-recreational human use impacts** (subcategories to which indicators apply are in brackets; see Tables 21–24 for list of subcategories):

 A. Monitoring question: How do land use activities (past, present and within and outside of Klamath Network park units) affect park unit aquatic resources; and how do these activities impact resource condition, quality, and ecosystem dynamics?

 B. Indicators of stress:

 1) Change in sedimentation/siltation and turbidity [A, B, D, F, H, I];
 2) Changes in the distributions and composition of aquatic biota [A, D, E, H, I, L];
 3) Disturbance (e.g., trampling, rutting, erosion) of stream banks and channels, pond and lake shorelines and wetted areas [A, N, O];
 4) Presence of and/or change in the concentrations of hydrocarbons and other motor vehicle derived contaminants [A, B, N];
 5) Change in water temperature and dissolved oxygen level [B, F, I, L];
 6) Change in channel morphology (e.g., bank and channel erosion), as well as flow and discharge rates [B, H, I, L];
 7) Presence of and/or change in the concentrations of heavy metals and other contaminants (e.g., herbicides, pesticides, dioxin) [B, C, G, I, J];
 8) Disruption of native anadromous salmonid passage [D];
 9) Change in nutrients (e.g., nitrogen and phosphorus) and primary productivity [B, E, F, I];
 10) Presence of and/or change in bacterial indicators of fecal contamination, *Giardia*, and *Cryptosporidium* [E, O];
 11) Change in the depth and quantity of groundwater [J];
 12) Presence of and/or change in the abundance of light-adapted biota as well as contaminants such as hydrogen peroxide and sodium hypochlorite in caves [K];
 13) Presence of and/or change in the amount of litter and garbage at or near resource sites [M].

 C. Monitoring Options:

 1) Collect sediment cores to determine historical and contemporary sedimentation rates; measure turbidity, bedload, flow and discharge rates, water-level [A, B, D, F, H, I];
 2) Measure water temperature, dissolved oxygen level, and nutrient and chlorophyll-a concentration [A, B, E, F, I, J, L];
3) Quantify the presence and composition of aquatic biota, and use rapid bioassessment methods to identify and quantify impact [A, B, D, E, H, I, L];

4) Quantify the presence and concentrations of heavy metals and other contaminants (e.g., herbicides, pesticides, dioxin, hydrogen peroxide, sodium hypochlorite) in water and/or tissue samples [C, G, I, J, K];

5) Analyze water samples for hydrocarbons and other motor vehicle derived contaminants [A, B, N];

6) Quantify the presence and concentrations of bacterial indicators of fecal contamination, *Giardia*, and *Cryptosporidium* in water samples [E, O];

7) Quantify the abundances of light-adapted biota in caves [K];

8) Measure groundwater depth and quantity [J];

9) Map and photo-archive beach, shoreline, bank and channel profiles and monitor for disturbance (e.g., trampling, soil compaction, rutting, erosion, de-vegetation) [D, N, O];

10) Measure ice-levels and the quantity and availability of water in caves [L];

11) Measure the presence and amount of litter and garbage at or near resource sites [M].

4. **Presence and extent of native/introduced (invasive) aquatic biota:**

 A. Monitoring question: What impact do introduced/invasive non-native aquatic biota have on the distributions and survival of native aquatic biota, and on the biotic community and ecosystem dynamics of Klamath Network park unit aquatic resources?

 B. Indicators of stress:

 1) Change in the (a) distributions, (b) abundances, (c) percent area occupied (PAO), and (d) community organization and structure of native and non-native introduced/invasive biota of concern.

 C. Monitoring Options:

 1) Quantify trends of native and introduced (invasive) aquatic biota including: (a) distributions, (b) abundances, (c) PAO, (d) community organization and structure, and (e) rates of recruitment and mortality;

 2) Quantify the condition and quality of the habitats occupied by native biota of concern.
5. **Visitor use impacts - recreational** including (a) tour-related impacts, (b) hiking, backpacking and camping, (c) stock (horse) and mountain bicycle use, (d) swimming, sun-bathing, and picnicking, (e) recreational fishing, and (f) motorized boats and boat-related activities:

A. Monitoring question: How do the recreational activities of visitors affect Klamath Network park unit aquatic resources, and how do these activities impact resource condition, quality, and ecosystem dynamics?

B. Indicators of stress:

1) Change in shoreline/bank erosion and concomitant change in nearshore sedimentation rates and siltation;
2) Change in shoreline/bank soil compaction, trampling, and de-vegetation;
3) Change in the distributions and composition of aquatic macroinvertebrates;
4) Presence of and/or change in the concentrations of bacterial indicators of fecal contamination;
5) Presence of and/or change in the amounts of litter and inorganic/organic contaminants.

C. Monitoring Options:

1) Quantify shoreline/bank condition and measure, map, and photo-archive indicators of erosion and impact (e.g., (a) sedimentation/ siltation; (b) soil compaction; (c) de-vegetation);
2) Collect sediment cores to document historical and contemporary sedimentation rates;
3) Measure water clarity and turbidity;
4) Quantify macroinvertebrate species presence and composition in all aquatic habitats;
5) Measure chlorophyll-a concentration in phytoplankton and periphyton samples (as a proxy for primary productivity);
6) Determine in water samples the presence and concentrations of bacterial indicators of fecal contamination;
7) Quantify the presence and amount of litter, as well as inorganic/organic contaminants in caves, and monitor for change.

6. **Atmospheric deposition** of nutrients (e.g., nitrogen and phosphorus) and pollutants (e.g., mercury, persistent organics, flame retardants, water-repellent coatings, etc.):

A. Monitoring question: How does the atmospheric deposition of nutrients and other contaminants affect the water quality and ecosystem dynamics of Klamath Network park unit aquatic resources?
B. Indicators of stress:

1) Presence of and/or change in the concentrations of air-borne nutrients and pollutants;
2) Change in primary productivity;
3) Change in the presence and composition of aquatic macroinvertebrates, especially species negatively affected by air-borne pollutants.

C. Monitoring Options:

1) Wet/dry chemistry: (a) rain and snow precipitation samples; (b) snow core samples;
2) Analyze water samples for nitrogen and phosphorus concentrations;
3) Analyze tissue samples (highest trophic-level possible) for the presence and concentrations of pollutants of interest;
4) Determine the concentration of chlorophyll-a in phytoplankton and periphyton samples (as a proxy for primary productivity);
5) Determine the presence and composition of aquatic macroinvertebrates, and use rapid bioassessment methods to identify and quantify impact.
REFERENCES CITED

Stribling, J.B., Jessup, B.K., White, J.S., Boward, D., and Hurd, M., 1998, Development of a Benthic Index of Biotic Integrity for Maryland Streams: CBWD-MANTA - EA-98-3, Maryland Department of Natural Resources, Chesapeake Bay and Watershed Programs, Monitoring and Non-Tidal Assessment Division, Annapolis, MD.

ATTACHMENT I

BIBLIOGRAPHY OF KLAMATH NETWORK PARK UNIT AQUATIC RESOURCES INVENTORY, MONITORING AND RESEARCH STUDY REPORTS AND PUBLICATIONS

CRATER LAKE NATIONAL PARK WATER QUALITY AND LIMNOLOGY

Brode, JS, 1933, Crater Lake Nature Notes 6(4).
Brode, JS, 1934, Crater Lake Nature Notes 7(3).

Campbell, B, 1929, Crater Lake Nature Notes 2(2).

Collier, R., J. Dymond, J. Mcmanus, and J. Lupton. Chemical and physical properties of the water column at Crater Lake, OR [Draft]. Corvallis, OR: Oregon State University, no date.

Diller, JS, 1897, National Geographic Magazine 8: 369-379.

Drake, ET, GL Larson, J Dymond & R Collier (eds), 1990, Crater Lake: An Ecosystem: Sixty-ninth Annual Meeting of the Pacific Division/ American Association for the Advancement of Science.

Hasler, AD, 1937, Crater Lake Nature Notes 10(2).

Hasler, AD, 1937, Crater Lake Nature Notes 10(3).
Hoffman, FO, 1969, MS Thesis, Oregon State University, Corvallis, OR.
water-data report OR-91-1.
water-data report OR-92-1.
Jarvis, J. B. Development/study package proposal: study water quality of Munson and
Jarvis, J. B. The first Crater Lake winter water quality operation. Unpublished: Crater
Lake National Park, no date.
Jarvis, J.B. "Crater Lake accomplishes first winter water quality sampling." Park Science
Kibby, HV, JR Donaldson & GE Bond, 1968, Limnology and Oceanography 13: 363-
366.
La Pierre, Yvette. "Taking stock: NPS reviews the effect of recreational fishing on native
Larson, D. W.. Annual report on the limnology and water quality monitoring program at
Larson, D. W. Limnological/water quality monitoring program, Crater Lake National
Larson, D. W. Second annual report on the limnology and water quality monitoring
program at Crater Lake National Park, Oregon Draft. Unpublished: Crater Lake National
Park, 1983.

Larson, Gary L. A review of the geographical distribution, morphology and water quality of caldera lakes. Corvallis, Oregon: College of Forestry, Oregon State University, no date.

Malick, JG, 1971, MS Thesis, Oregon State University, Corvallis, OR.

Myers, GS, 1942, Copeia 1942(2): 77-82.

Pettit, E, 1936, Proceedings of the National Academy of Sciences 22: 139-146.

Special Issue, 1996, Lake and Reservoir Management 12: 221-310.

Thompson, J. M., "Chemical and isotopic compositions of waters from Crater Lake, Oregon, and nearby vicinity." 1990.

Various Authors. Crater Lake water contamination hearings Sections 1, 2, 3, 4, and addendum to section 4. National Park Service, 1975.

CRATER LAKE NATIONAL PARK FISHERIES STUDIES

California Cooperative Fish Research Unit. California Cooperative Fish Research Unit: 2001 annual report. 2001.

California Cooperative Fish Research Unit. California Cooperative Fish Research Unit: 2002 annual report. 2002.

Crater Lake National Park. Fishes - Stocking (to 1939). no date.

Evermann, B. W. "US Fish Commission investigations at Crater Lake." In Mazama: A Record of Mountaineering in Pacific Northwest, 331-238. 1897.

Farner, D.S. "Memorandum on fish stocking policy for Crater Lake." 1940.
Farner, D.S. "Natural reproduction of Crater Lake fish." 1940.

Farner, D.S. "Memorandum on fishing." 1941.

Farner, Donald S. "Memorandum on fishing." 1946.

Hasler, AD, 1938, Crater Lake Nature Notes 11(2).

Hasler, Arthur D. "Fish biology and limnology of Crater Lake, Oregon (preliminary report)." no date.

Hasler, Arthur D. "The productivity of Crater Lake in terms of fish food." 1937.

Hubbard, C. Andresen. "Fact and fancy about Crater Lake fish." 1933.

Huestis, R.R. "Progress report on saprolegnia in Crater Lake fish." no date.

Kartchner, Wayne E. "Fish planting in the small lakes of Wizard Island." no date.

Shepard, P.H. "Memorandum on fishing for the season of 1949." 1949.

U.S. Fish and Wildlife Service. "Endangered and threatened wildlife and plants; 12-month finding for a petition to list the west coast distinct population segment of the fisher (Martes pennanti)." Federal register 69, no. 68 (no date.): 18770-18792.

Various Authors. Fishes - General (1941 to 1960). Crater Lake National Park, no date.

Walker, M. V. "Fish and fishing problems of Crater Lake." 1940.

Walker, M.V. "Fish and fishing problems of Crater Lake." 1940.

Wallis, OL. 1948. MS Thesis, Oregon State College, Corvallis, OR.

Wallis, Orthello L. "Plans and aims of stream fish survey of the streams of Crater Lake National Park during the 1947 season." no date.

CRATER LAKE NATIONAL PARK STREAM STUDIES

Wallis, Orthello L. "Plans and aims of stream fish survey of the streams of Crater Lake National Park during the 1947 season." no date.

LASSEN VOLCANIC NATIONAL PARK WATER QUALITY

Author Unknown. 1955 Lake Survey Report

Author Unknown. 1965. Lake Survey Project Summary of Findings…NPS, LAVO.

DeMartini, JD. 1994. Report, NPS, LAVO.

DeMartini, JD. 1997. Report, NPS, LAVO.

DeMartini, JD, et al. 2000. Surveys of Sifford Lakes. NPS, LAVO.

Dobson, Graham A. "Lost Creek water analysis 8-97, high turbidity event (unknown cause)." 1997.

Ghiorso, MS. 1972. Preliminary summary of the chemical nature of the thermal springs of LAVO.

Ghiorso, MS. 1976. Geochemistry of acid-sulfate hot springs. NPS, LAVO.

Ghiorso, MS. 1977. Rock alteration and aqueous chemistry of the hot springs in LAVO. NPS, LAVO.

Ghiorso, MS. 1979. Geochemistry of the hot springs in LAVO. NPS, LAVO.

Ghiorso, MS. 1980. Geochemical studies of the volcanic domes and hot springs of LAVO. NPS, LAVO.

Gunter, Bobby Dean. "Geochemical and isotopic studies of hydrothermal gases and waters." 125 p Diss Abstr 29, no. 1 (1968): 135B-136B.

Gunter, Bobby Dean. "Geochemical and isotopic studies of hydrothermal gases and waters." Diss., University of Arkansas, 1968.

Landers, DH. 1986. EPA-600/3-86/054a.

Majors, HM. 1961. Progress Reports No. 2 and No. 3. Seattle University, Seattle, WA. NPS, LAVO.

National Park Service Spreadsheet (RL_1986.xls). LAVO.

Purvis JM. 1976. Summary of Aquatic Resources Inventory, Unit 10…Report. NPS, LAVO.

Purvis JM. 1976. Summary of Aquatic Resources Inventory, Unit 14…Report. NPS, LAVO.

Sorey, Michael L., and Steven E. Ingebritsen. "Comparison of stream and hot-water discharge rates from the hydrothermal system in and adjacent to Lassen Volcanic National Park, California." AGU 1990 fall meeting Eos, Transactions, American Geophysical Union 71, no. 43 (1990): 1674.

Taylor, Wm., and David C. Randall. "Ecological survey of the vegetation of the Cub Creek watershed, Lassen National Forest, California." no date.

LASSEN VOLCANIC NATIONAL PARK AMPHIBIAN AND FISHERIES STUDIES

California Department of Fish and Game and National Park Service - Western Region. "Joint study on fishery management in National Parks in California." no date.

Dettman, D. H. "Distribution, abundance, and microhabitat segregation of rainbow trout and Sacramento squawfish in Deer Creek, California." Diss., University of California, Davis, 1973.

Kimsey, J. B. "The life history of the Tui Chub, Siphateles bicolor (Girard), from Eagle Lake, California." Calif Fish and Game 40, no. 4 (1954): 395-411.

Lassen Volcanic National Park. Fish. 1930.

Lassen Volcanic National Park. Fish. 1941.

Lassen Volcanic National Park. Fish planting. 1932.

Unknown, Management of high country lakes in the National Parks of California, 1976.

Unknown, Food Habits Analysis of Fish from Mountain Lakes in Lassen Volcanic National Park, California. 1977.
Unknown, Aquatic resources of Lassen Volcanic, Sequoia-Kings Canyon, and Yosemite National Parks, with special reference to trout stocking and the recreational fishery, 1978.

Unknown, FY04 Joint inventory of fishes, native amphibians, and invertebrates in all lakes and ponds of the park. Status of the trophy rainbow trout fishery at Manzanita Lake (Lassen Volcanic National Park) based on reports from angler survey boxes in 1994.

Wallis, OL. 1959. Fishery Resources Report. NPS, LAVO.

Wallis, O. L. Interpretation, research, and management of the fishery resources in Lassen Volcanic National Park. 1959.

LASSEN VOLCANIC NATIONAL PARK LAKE MONITORING

West, JR. 1976. Twin Lakes Regional Report. NPS, LAVO.

Lava Beds National Monument Water Quality

California Regional Water Quality Control Board. North Coast Region Water Quality Control Board 303(d) list update recommendations. 2001.

Oregon Caves National Monument Water Quality

REDWOOD NATIONAL AND STATE PARKS WATERSHED MONITORING

Anderson, David G. Invertebrate drift and juvenile salmonid habitat of Redwood Creek watershed. 1981.
Best, David W., Mary Ann Madej, and John Pitlick. Construction of a sediment budget for Redwood Creek watershed, northern California. No date.

Bundros, Gregory J., and Barry R. Hill. Road conditions and erosion potential in the upper Redwood Creek watershed. 1997.

Johnson, Louise E. M-3 and M-4 roads and slope, watershed rehabilitation project: unit 87-5. 1988.

Kenning, Michael, and Darcia A. Short. M-7 Road and Chilula Creek culvert replacement, watershed rehabilitation project summary report [unit 88-9]. 1988.

Madej, Mary Ann, and Vicki L. Ozaki. Risk assessment in watershed rehabilitation. 1996.

Martinez, Manuel, Chris McAuliffe, Bill Michaels, Dan Miles, and Mary Anne Pella. A survey of Streelow Creek watershed. no date.

Mattison, Jeffrey, Terry Spreiter, and Judy Wartella. "A biological assessment of impacts to terrestrial threatened and endangered species from the Watershed Restoration Program in portions of Lost Man Creek Watershed in Redwood National and State Parks (RNSP)." no date.

McCullah, John A. Recent watershed conditions of Streelow Creek basin in the vicinity of Redwood National Park, California. 1983.

National Marine Fisheries Service. Biological opinion and conference opinion watershed restoration program: Routine and non-routine road maintenance in Redwood National and State Parks. no date.

Parker, Gary. Formation and propagation of large-scale sediment waves in periodically disturbed mountain watersheds [study plan]. 1995.

Popenoe, James H. Soils of the M-2-1-1, M-3-1-2, M-4-1 and beginning of M-3 and M-4 roads, Bridge Ridge and Bridge Creek headwaters [watershed rehabilitation units]. 1985.

Popenoe, James H. Soils of the M-7-5 and 1800 roads, east slope of Bridge Ridge [watershed rehabilitation unit]. 1985.

Popenoe, James H., Jack Lewis, and Donna C. Marron. Soil survey of L-1 and L-1-5 roads for watershed rehabilitation, Redwood National Park [rehabilitation unit 82-4]. no date.

Popenoe, James H., and Roy W. Martin. Soils of the M-6 Road, Bridge Creek watershed rehabilitation unit. 1985.

Popenoe, James H., and Roy W. Martin. Soils of the M-7 Road at the Bridge Creek crossing [watershed rehabilitation unit 86-1]. 1985.

Potter, Robert G. Rehabilitating the Redwood Creek watershed: a preliminary plan prepared for the California Resources Agency by a multidisciplinary study team. 1975.

Redwood National Park. Wildlife species in the vicinity of the Redwood Creek watershed. no date.

Reed, Lois J. Evaluation of revegetation at Copper Creek [watershed rehabilitation unit 79-5]. 1983.

Reeves, Gordon, Terry D. Roelofs, and John West. Aquatic ecosystem analysis of two logged and two unlogged watersheds in Redwood National Park and Prairie Creek Redwoods State Park. 1976.

Sanders, Michael B. Summary report, watershed rehabilitation unit 95-3, partial removal of the K&K Road, Phase VI: South Fork and Middle Fork Slide Creek. 1997.

Sanders, Michael B. Summary report, watershed rehabilitation unit 96-2, partial removal of the K&K Road, Phase VII: North Fork Slide Creek. 1997.

Short, Darcia A. Summary report, watershed rehabilitation unit 91-1: C-Line. no date.

Sinclair, J. D. Report of watershed conditions observed on lands of the Arcata Redwood Company, Humboldt County, California. 1966.

Steensen, David L. Summary Report, watershed rehabilitation unit 90-1: C-20 Road. no date.

Utley, Kenneth W. Procedures of erosion control watershed rehabilitation in Redwood National Park, northern California, USA [abstract]. no date.

Utley, Kenneth W. Watershed rehabilitation report for South of Copper Creek (Big Tree), site 80-1 [draft]. 1981.

Utley, Kenneth W., and et al. Field trip guide of watershed rehabilitation project, Redwood National Park. no date.

Wallen, Rick, Terry Spreiter, Dick Mayle, and Bill Falvey. A biological assessment of impacts to aquatic threatened and proposed species from the watershed restoration program in Redwood National and State Parks (RNSP). Redwood National and State Parks, 1998.

Weaver, William E. Sediment control and watershed rehabilitation at Redwood National Park: a common sense status report of the first three years (1978-1980). no date.

Weaver, William E., and James H. Popenoe. Geomorphology, soils, landuse and watershed rehabilitation: California Forest Soils Council field trip (road log - day 2). no date.

Wosika, Edward P. Watershed rehabilitation report for the Maneze Creek unit (site 80-2). no date.

Youngblood, Neal. Summary Report, watershed rehabilitation unit 96-1: 230 Road [draft]. no date.

REDWOOD NATIONAL AND STATE PARKS WATER QUALITY

California Regional Water Quality Control Board. North Coast Region Water Quality Control Board 303(d) list update recommendations. 2001.

Markman, Steve G. "Longitudinal variation in suspended sediment and turbidity of two undisturbed streams in northwestern California in relation to the monitoring of water quality above and below a land disturbance." Diss., Humboldt State University, 1990.

Ricks, Cynthia L. (?). Summary of seasonal sediment transport, habitat and water quality at the mouth of Redwood Creek, August 1979 - present. 1982.

Stone, L., 1975, Basic data on the quality of water in Redwood Creek and selected tributaries, Humboldt County and Mill Creek, Del Norte County, California, water years 1974 and 1975: U.S. Geological Survey Water Resources Divisions.

REDWOOD NATIONAL AND STATE PARKS FISHERIES STUDIES

Anderson, David G. "Juvenile salmonid habitat of the Redwood Creek basin, Humboldt County, California." Diss., Humboldt State University, 1988.

Anderson, David G. Invertebrate drift and juvenile salmonid habitat of Redwood Creek watershed. 1981.

Anderson, David G. Summary of reports relating to coho salmon (*Oncorhynchus kisutch*) in the Redwood Creek basin. 1994.

Brown, Randy A. "Physical rearing habitat for anadromous salmonids in Redwood Creek basin, Humboldt County, California." Diss., Humboldt State University, 1988.

Burns, James W. "The carrying capacity for juvenile salmonids in some northern California streams." California Fish and Game 57, no. 1 (1971): 44-57.

California Cooperative Fisheries Research Unit. Survival of coho salmon in northern California streams of varying habitat quality. 2000.

California Department of Fish and Game. Length of residency of juvenile chinook salmon in the Klamath River estuary: annual performance report. 1994.

California Department of Fish and Game. California fish and wildlife plan: Volume III-supporting data: Part B- inventory, salmon-steelhead and marine resources. 1965.

Coey, Robert M. "Effects of sedimentation on incubating coho salmon, (*Oncorhynchus kisutch*) in Prairie Creek, California." Diss., Humboldt State University, 1998.

Decker, L. Habitat utilization by salmonids in Prairie Creek, California. 1970.

Hayes, John M. "A study of the salmonids and some other fishes of Big Lagoon, Humboldt County, California." Diss., Humboldt State University, 1960.

Jong, Bill. "Coho salmon presence/absence survey results; Richardson Creek trib [sic] to Klamath River (Del Norte County) (field note)." 2003.

Krakker, Joseph J. "Utilization of the Klamath River estuary by juvenile chinook salmon (Oncorhynchus tshawytscha), 1986." Diss., Humboldt State University, 1991.

Larson, James P. "Utilization of the Redwood Creek estuary, Humboldt County, California, by juvenile salmonids." Diss., Humboldt State University, 1987.

Lechuga, Gilbert. Comparison of condition factors, length and weights of 3 yr-old adult hatchery and wild coho salmon (Oncorhynchus kisutch) during upstream migration. 1983.

Manning, David J., Terry D. Roelofs, and William T. Trush. Carrying capacity and limiting habitat analysis for coho salmon in streams of northwestern California. Arcata, California: Department of Fisheries and Institute for River Ecosystems; Humboldt State University, 1996.

McCain, Michael Eugene. "Habitat utilization by the 1987 and 1988 cohorts of chinook salmon from emergence to outmigration in Hurdygurdy Creek, California." Diss., Humboldt State University, 1994.

McGie, Alan M. "Life-history studies of the salmonids inhabiting Maple and Tom Creeks, tributaries to Big Lagoon, California." Diss., Humboldt State University, 1960.

McKeon, Joseph F. A summary of data compiled from sampling efforts of downstream migrant salmonids in Redwood Creek, Orick, CA. 1981.

Mckeon, Joseph F. "Downstream migration, growth and condition of juvenile fall chinook salmon in Redwood Creek, Humboldt County, California." Diss., Humboldt State University, 1985.

Neillands, George. Redwood Creek embayment salmonid monitoring project. 1986.

Quinones, Rebecca M. "Habitat utilization and foraging habits of juvenile salmonids in the Smith River estuary, California." Diss., Humboldt State University, 2003.

Rellim Redwood Company. Mill Creek monitoring program: juvenile salmonid monitoring on the east and west branches of Mill Creek. 1994.

Roelofs, Terry D., Michael J. Furniss, and Carlton S. Yee. Forest roads: design, construction, and maintenance to protect anadromous salmonid habitats [DRAFT]. no date.

Self, S. "Some questions to be addressed regarding the current instream production of anadromous salmonids from the mainstem of Redwood Creek: Draft." 2001.

Smedley, S.C. "Pink Salmon in Prairie Creek, California." California Fish and Game 38, no. 2 (1952): 275.
Sparkman, Michael D. "Fry emergence and gravel permeability of chinook (Oncorhynchus tshawytscha) and coho salmon (Oncorhynchus kisutch) spawning redds in Prairie Creek, Humboldt County, California." Diss., Humboldt State University, 1997.

Sparkman, Michael D. "Negative influences of predacious egg-eating worms, Haplotaxis ichthyophagous, and fine sediments on coho salmon, Oncorhynchus kisutch, in natural and artificial redds." Diss., Humboldt State University, 2003.

Sparkman, Michael D. Annual Report: Upper Redwood Creek juvenile salmonid downstream migration study, 2000-01, project 2a5. California Department of Fish and Game, 2002.

Sparkman, Michael. "Phase II of the Timing and period of fry emergence from chinook and coho salmon redds in Prairie Creek, Humboldt County, California." no date.

Stone, L., 1994, Mill Creek monitoring program: juvenile salmonid monitoring program on the east and west branches of Mill Creek: Rellim Redwood Company, Crescent City, California, 25 p.

Various Authors. untitled: Pacific salmon archives at Humboldt State University, Arcata CA. no date.

Young, Jeffrey S. "Identification of larval smelt (Osteichthyes: Salmoniformes: Osmeridae) from Northern California." Diss., Humboldt State University, 1984.

WHISKEYTOWN NATIONAL RECREATION AREA WATER QUALITY

CDHS Database. 1984-1996. NPS-WRD, 2000

Hothem, et al. 2002-2004. USGS Project CA598
May, J & L Brown. 2004-2006. USGS Project 9VL22

NPS, Shasta College, Salix Applied Earthcare: Watershed Restoration and Logging Road Removal Project, 1996

UC Davis report to Bureau of Reclamation. 1994. NPS-WRD, 2000

WHISKEYTOWN NATIONAL RECREATION AREA FISHERIES STUDIES

Fish & Game Committee. Proposed Anadromous fisheries program on Clear Creek Shasta County, California. Redding, CA: Fish & Game Committee, Greater Redding Chamber of Commerce, 1971.

Whiskeytown National Recreation Area. Summary of Whiskeytown lake fish plants. no date.

Whiskeytown National Recreation Area. Untitled: Fish planting data, Whiskeytown Lake. no date.
ATTACHMENT II
AQUATIC RESOURCES AND WATER QUALITY QUESTIONNAIRE

1. Name of national park unit covered by this questionnaire:

2. Contact information for the principal person completing this questionnaire:
 A. Name:
 B. Position:
 C. Telephone number:
 D. Email address:

3. What aquatic resources are present within the park boundary (see next page for list of definitions); have any of these systems/subsystems been inventoried (I), monitored (M) or has research (R) been conducted within any of these systems/subsystems (respond in column 4 with an I, M, and/or R); provide the actual total count for each system/subsystem inventoried, or if not inventoried provide an estimated count, if possible, for each system/subsystem (column 5); in column 6, identify the source of the count in column 5 (I for Inventory, E for estimate).

<table>
<thead>
<tr>
<th>System</th>
<th>Subsystem</th>
<th>Present in park (Y/N)</th>
<th>I/M/R</th>
<th>Count</th>
<th>Inventory/Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marine</td>
<td>subtidal</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>intertidal</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Estuarine</td>
<td>subtidal</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>intertidal</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lotic</td>
<td>tidal</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(streams and springs)</td>
<td>perennial</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>intermittent</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
3. continued

<table>
<thead>
<tr>
<th>System</th>
<th>Subsystem</th>
<th>Present in park (Y/N)</th>
<th>I/M/R</th>
<th>Count</th>
<th>Inventory/Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lentic (lake, pond, reservoirs)</td>
<td>permanent > 8 ha</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>permanent < 8 ha, > 2m max depth</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>permanent < 8 ha, < 2m max depth</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>intermittent ponds</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Palustrine (wetlands)</td>
<td>marsh</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>prairie</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ice Caves</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geothermal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Definitions of terms associated with 3 above:

1. Marine System: open ocean
2. Subtidal Subsystem: substrate continuously submerged
3. Intertidal Subsystem: substrate is exposed and flooded by tides and includes associated splash zone
4. Lotic System: flowing water
5. Tidal Subsystem: channel gradient is low and water velocity fluctuates under tidal influence
6. Perennial Subsystem: water flows throughout the year
7. Intermittent Subsystem: channel contains flowing water for only part of the year. When water is not flowing, it may remain in isolated pools or surface water may be absent
8. Lentic System: ponds, lakes, and reservoirs
9. Palustrine System: all nontidal wetlands dominated by trees, shrubs, persistent emergent vegetation, emergent mosses or lichens, and all such wetlands that occur in tidal areas where salinity due to ocean-derived salts is below 0.5 \(0/00\).
4. List water bodies of particular importance or interest to the park and park management (for Column 2 see 3 above).

<table>
<thead>
<tr>
<th>Water Body</th>
<th>Type</th>
<th>Reason for Importance or Interest</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
5. List past and current water quality monitoring (physical, chemical, biological) efforts within your park. Attach additional page, if necessary.

<table>
<thead>
<tr>
<th>Brief description of the monitoring effort</th>
<th>Duration of this effort</th>
<th>Who conducted or is conducting this monitoring?</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>a</td>
</tr>
</tbody>
</table>

Who conducted or is conducting this monitoring?

a = park staff; b = another federal, or a state agency; c = university; d = other
6. List the water resource management issues or land use issues that now impact water resources from either within or outside your park. Examples of issues to list include: atmospheric deposition, introduced species, resource degradation due to visitor impact, logging/deforestation, agriculture, grazing, mining, road construction, off-road vehicles, sewage from second homes, boats & personal water craft, urbanization on a park boundary, etc (you may have other issues). Issues also may include “point discharges” into park aquatic systems or their upstream tributaries (note, a “point discharge” is something coming from a pipe or a distinct point of leakage, as opposed to a “non point discharge” from diffuse sources, such as contaminated runoff coming from farm fields. Point discharges also can include public or privately owned treatment works (POTW’s) --i.e., sewage plants. Point discharges also can include EPA designated Superfund Sites. Think in terms of both current impacts to water bodies and future impacts related to growth (industrial, commercial, or residential) or expansion of various types of development. Attach additional page, if necessary.

<table>
<thead>
<tr>
<th>Issues Within the Park Boundary</th>
<th>Issues Outside the Park (upstream, adjacent to, nearby)</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Issue (describe the issue and its general location)</td>
<td>Near-term or long-term?</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Near term refers to impacts that are current or < 3 years away; *Long-term* refers to potential impacts > 3 years away
7. List the Staff level of experience or interest in water quality monitoring at the park. Identify individuals with a particular interest in water resources or water quality monitoring. If your park has particular outside contacts or sources for water quality and water resource issues, please include them.

<table>
<thead>
<tr>
<th>Name</th>
<th>Phone</th>
<th>Email</th>
<th>Experience</th>
<th>Expertise</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Thank you for your time and effort in completing this questionnaire.
If you have any questions or need clarification, please contact:
Robert Hoffman: (541) 750-1013 or robert_hoffman@usgs.gov

The questionnaire can be returned to Robert Hoffman via email or snailmail:

Robert Hoffman
USGS FRESC
3200 SW Jefferson Way
Corvallis, OR 97331
ATTACHMENT III

General Conceptual Models of Freshwater and Marine Ecosystems

Freshwater lentic (lakes and ponds): after Larson 1990
Freshwater lentic (wetlands): after Mitsch and Gosselink 2000

Hydrology
water level, flow, frequency, etc.

Physicochemical environment
(soil, temperature, chemistry, debris, detritus, etc.)

Biota
(vegetation, animals, and microbes)

direct effect
biotic feedback
Freshwater lotic (streams and rivers): after Wetzel 1983

General Geothermal/hydrothermal water model:
Marine Ecosystem Zonation: Sarr et al. 2004

- **Intertidal Zone**
 - Stability: More
 - Temperature: Stability
 - Moisture: Stability
 - Salinity: Stability

- **Subtidal Zone**
 - Stability: Less
 - Temperature: Stability
 - Moisture: Stability
 - Salinity: Stability

- **Pelagic Zone**
 - Stability: Less
 - Temperature: Stability
 - Moisture: Stability
 - Salinity: Stability

- **Strand Zone**
 - Stability: More
 - Temperature: Stability
 - Moisture: Stability
 - Salinity: Stability
Marine Ecosystem Dynamics: Sarr et al. 2004

- Wave Action & Battering
- Tsunamis
- Littoral Sediments
- Longshore Currents
- Beach Erosion & Deposition
- Tidal Fluctuations
- Watershed Exports
- Upwelling
 - Cold water
 - Nutrients
- Submarine Landslides
- Longshore Currents
River Estuary: dominant influences on sedimentation and erosion (after Simenstad *et al.* 1984a). Width of arrow indicates level of impact of influence-type in each of three zones of the Columbia River Estuary.
River Estuary Trophic Groups: simplified representation of major linkages between Columbia River Estuary trophic groups (from Weitkamp 1994)
Lagoon Estuary: model structure for nitrogen cycling (after Webster & Harris 2004). DIN = dissolved inorganic nitrogen; DON = dissolved organic nitrogen.