14 2.4. Parameter Regression on Independent Slopes Model (PRISM)

Weather and Climate Inventory, Klamath Network, National Park Service, 2007

 2.0. Climate Background

 2.4. Parameter Regression on Independent Slopes Model (PRISM)

The climate maps presented in this report were generated using the Parameter Regression on Independent Slopes Model (PRISM). This model was developed to address the extreme spatial and elevation gradients exhibited by the climate of the western U.S. (Daly et al. 1994; 2002; Gibson et al. 2002; Doggett et al. 2004). The maps produced through PRISM have undergone rigorous evaluation in the western U.S. This model was developed originally to provide climate information at scales matching available land-cover maps to assist in ecologic modeling. The PRISM technique accounts for the scale-dependent effects of topography on mean values of climate elements. Elevation provides the first-order constraint for the mapped climate fields, with slope and orientation (aspect) providing second-order constraints. The model has been enhancedgradually to address inversions, coast/land gradients, and climate patterns in small-scale trapping basins. Monthly climate fields are generated by PRISM to account for seasonal variations in elevation gradients in climate elements. These monthly climate fields then can be combined into seasonal and annual climate fields. Since PRISM maps are grid maps, they do not replicate point values but rather, for a given grid cell, represent the grid-cell average of the climate variable in question at the average elevation for that cell. The model relies on observed surface and upper air measurements to estimate spatial climate fields.

 ***previous*** — ***next***