32 Appendix D. General design considerations for weather/climate-monitoring programs

D.2.1. Temporal Behavior

It is possible that high correlations will occur between station pairs during certain portions of the year (i.e., January) but low correlations may occur during other portions of the year (e.g., September or October). The relative contributions of these seasons to the annual total (for precipitation) or average (for temperature) and the correlations for each month are both factors in the correlation of an aggregated time window of longer duration that encompasses those seasons (e.g., one of the year definitions such as calendar year or water year). A complete and careful evaluation ideally would include such a correlation analysis but requires more resources and data. Note that it also is possible and frequently is observed that temperatures are highly correlated while precipitation is not or vice versa, and these relations can change according to the time of year. If two stations are well correlated for all climate elements for all portions of the year, then they can be considered redundant.

With scarce resources, the initial strategy should be to try to identify locations that do not correlate particularly well, so that each new site measures something new that cannot be guessed easily from the behavior of surrounding sites. (An important caveat here is that lack of such correlation could be a result of physical climate behavior and not a result of faults with the actual measuring process; i.e., by unrepresentative or simply poor-quality data. Unfortunately, we seldom have perfect climate data.) As additional sites are added, we usually wish for some combination of unique and redundant sites to meet what amounts to essentially orthogonal constraints: new information and more reliably-furnished information.