32 Appendix D. General design considerations for weather/climate-monitoring programs

D.1.1. Network Purpose

Humans seem to have an almost reflexive need to measure temperature and precipitation, along with other climate elements. These reasons span a broad range from utilitarian to curiosity driven. Although there are well-known recurrent patterns of need and data use, new uses are always appearing. The number of uses ranges in the thousands. Attempts have been made to categorize such uses (see NRC 1998; NRC 2001). Because climate measurements are accumulated over a long time, they should be treated as multi-purpose and should be undertaken in a manner that serves the widest possible applications. Some applications remain constant, while others rise and fall in importance. An insistent issue today may subside, while the next pressing issue of tomorrow barely may be anticipated. The notion that humans might affect the climate of the entire Earth was nearly unimaginable when the national USDA (later NOAA) cooperative weather network began in the late 1800s. Abundant experience has shown, however, that there always will be a demand for a history record of climate measurements and their properties. Experience also shows that there is an expectation that climate measurements will be taken and made available to the general public.

An exhaustive list of uses for data would fill many pages and still be incomplete. In broad terms, however, there are needs to document environmental conditions that disrupt or otherwise affect park operations (e.g., storms and droughts). Design and construction standards are determined by climatological event frequencies that exceed certain thresholds. Climate is a determinant that sometimes attracts and sometimes discourages visitors. Climate may play a large part in the park experience (e.g., Death Valley and heat are nearly synonymous). Some park units are large enough to encompass spatial or elevation diversity in climate and the sequence of events can vary considerably inside or close to park boundaries. That is, temporal trends and statistics may not be the same everywhere, and this spatial structure should be sampled. The granularity of this structure depends on the presence of topography or large climate gradients or both, such as that found along the U.S. West Coast in summer with the rapid transition from the marine layer to the hot interior.

Plant and animal communities and entire ecosystems react to every nuance in the physical environment. No aspect of weather and climate goes undetected in the natural world. Wilson (1998) proposed “an informal rule of biological evolution” that applies here: “If an organic sensor can be imagined that is capable of detecting any particular environmental signal, a species exists somewhere that possesses this sensor.” Every weather and climate event, whether dull or extraordinary to humans, matters to some organism. Dramatic events and creeping incremental change both have consequences to living systems. Extreme events or disturbances can “reset the clock” or “shake up the system” and lead to reverberations that last for years to centuries or longer. Slow change can carry complex nonlinear systems (e.g., any living assemblage) into states where chaotic transitions and new behavior occur. These changes are seldom predictable, typically are observed after the fact, and understood only in retrospect. Climate changes may not be exciting, but as a well-known atmospheric scientist, Mike Wallace, from the University of Washington once noted, “subtle does not mean unimportant.”